Un modèle de deep learning pour trier les syndromes thoraciques aigüs à partir d'une radiographie pulmonaire
MARDI 17 JANVIER 2023
Selon une étude publiée dans Radiology, l'intelligence artificielle (IA), plus particulièrement le deep learning, peut aider à trier les patients qui se présentent à l'hôpital avec des douleurs thoraciques aiguës. Un modèle de deep learning semble en effet avoir la capacité d’évaluer le risque de syndrome coronarien, d’embolie pulmonaire ou de dissection aortique notamment.

Le syndrome de douleur thoracique aiguë peut faire ressentir au patient une oppression ou une douleur intense qui se propage au dos, au cou, aux épaules, aux bras ou à la mâchoire et représente plus de 7 millions de visites aux urgences chaque année aux États-Unis, ce qui en fait l'une des plaintes les plus courantes.
Un modèle de deep learning entraîné pour identifier les risques après un syndrôme de douleur thoracique aigüe
Moins de 8 % de ces patients sont diagnostiqués de syndrome coronarien aigu, d'embolie pulmonaire ou de dissection aortique qui font appel largement à l’imagerie diagnostique cardiovasculaire et pulmonaire, étant donnée la faible spécificité de l’électrocardiogramme ou des examens sanguins. Dans ce contexte, il est important de trier efficacement les patients à très faible risque de ces affections graves.
Le deep learning peut aider à optimiser ce triage. C’est ce qu’a tenté de démontrer une étude américano-hongroise publiée dans la Revue Radiology. « À notre connaissance, notre modèle de deep learning est le premier à utiliser les radiographies pulmonaires pour identifier les patients souffrant de douleurs thoraciques aiguës qui ont besoin de soins médicaux immédiats », annonce l'auteur principal de l'étude, le Pr Márton Kolossváry, chercheur en radiologie au Massachusetts General Hospital (MGH) de Boston.
Un modèle formé sur plus de 23 000 patients
Au cours de ce travail de recherche, le Pr Kolossváry et ses collègues ont développé un modèle de deep learning open source pour identifier les patients atteints du syndrome de douleur thoracique aiguë qui étaient à risque de syndrome coronarien aigu de 30 jours, d'embolie pulmonaire, de dissection aortique ou de mortalité, toutes causes confondues, sur la base d’une radiographie pulmonaire.
L'étude a utilisé les dossiers informatisés de 5 750 patients (âge moyen 59 ans, dont 3 329 hommes) présentant un syndrome de douleur thoracique aiguë ayant fait l’objet d’une radiographie pulmonaire et d’une imagerie cardiovasculaire ou pulmonaire supplémentaire et/ou des épreuves d'effort au MGH ou au Brigham and Women's Hospital de Boston entre janvier 2005 et décembre 2015. Le modèle de deep learning a été formé sur 23 005 patients de l'HGM pour prédire un critère composite à 30 jours de syndrome coronarien aigu, d'embolie pulmonaire ou de dissection aortique, ainsi que de mortalité, toutes causes confondues sur la base d'images radiographiques thoraciques.
Un outil permettant de sélectionner les patients nécessitant des soins urgents
L'outil deep learning a considérablement amélioré la prédiction des événements indésirables, au-delà de l'âge, du sexe et des marqueurs cliniques conventionnels. Le modèle a maintenu sa précision diagnostique pour l'âge, le sexe, l'origine ethnique et la race. En utilisant un seuil de sensibilité de 99 %, le modèle a pu différer des tests supplémentaires chez 14 % des patients, contre 2 % lors de l'utilisation d'un modèle incorporant uniquement des données sur l'âge, le sexe et les biomarqueurs.
« En analysant la radiographie pulmonaire initiale de ces patients à l'aide de notre modèle de deep learning automatisé, nous avons pu fournir des prédictions plus précises concernant les résultats des patients par rapport à un modèle qui utilise des informations sur l'âge, le sexe ou les examens sanguins, ajoute le Pr Kolossváry. Nos résultats montrent que les radiographies pulmonaires pourraient être utilisées pour aider à trier les patients souffrant de douleurs thoraciques au service des urgences. »
Selon lui, à l'avenir, un tel modèle automatisé pourrait analyser les radiographies pulmonaires en arrière-plan et aider à sélectionner ceux qui bénéficieraient le plus d'une attention médicale immédiate. Il pourrait également aider à identifier les patients en état de sortir en toute sécurité du service des urgences.
Bruno Benque avec RSNA