Vous êtes dans : Accueil > Actualités > Intelligence Artificielle, Machine Learning > Un nouveau modèle d'IA pour renforcer l'anonymisation des données de Santé

Un nouveau modèle d'IA pour renforcer l'anonymisation des données de Santé

MARDI 01 JUIN 2021 Soyez le premier à réagirSoyez le premier à réagir

Les algorithmes d'IA apportent chaque jour la preuve de leur efficacité diagnostique mais, pour entraîner ces algorithmes, il faut accéder des données médicales protégées. Une équipe de chercheurs de la Technical University of Munich a développé une technologie qui garantit la protection des données personnelles des patients lors de la formation d’algorithmes. Il est maintenant utilisé pour la première fois dans un algorithme qui identifie la pneumonie sur les images radiographiques pédiatriques.

Nature Machine Intelligence

La médecine numérique ouvre des possibilités entièrement nouvelles, notamment les nouveaux algorithmes d'IA dont l’efficacité dépend de la quantité et de la qualité des données utilisées pour les former.

Des failles possibles dans l'anonymisation de données de Santé

Pour maximiser le pool de données, il est courant de partager les données des patients entre les centres de radiologie en envoyant des copies des bases de données aux sociétés où l'algorithme est formé. À des fins de protection des données, ces dernières sont généralement soumises à des processus d'anonymisation et de pseudonymisation qui n’échappent pas, quelquefois, à la critique. « Certains processus d’anonymisation se sont souvent avérés inadéquats en termes de protection des données de santé des patients », remarque le Dr Daniel Rueckert, Professeur d’intelligence artificielle en soins de santé et en médecine à la Technical University of Munich (TUM).

Pour résoudre ce problème, une équipe interdisciplinaire de la TUM a travaillé avec des chercheurs de l'Imperial College de Londres et de l'organisation à but non lucratif OpenMined pour développer une combinaison unique d’aide au diagnostic basée sur l'IA d'images radiologiques qui protègent la confidentialité des données. Dans un article publié dans Nature Machine Intelligence, l'équipe a montré que son application fonctionne grâce à un algorithme de deep learning qui aide à classer les signes radiologiques de pneumonie dans les radiographies pulmonaires  des enfants.

Des modèles formés dans les centres de radiologie avant d'être transférés

« Nous avons testé nos modèles auprès de radiologues spécialisés. Dans certains cas, les modèles ont montré une précision comparable ou meilleure dans le diagnostic de divers types de pneumonie chez les enfants », poursuit le Professeur Marcus R. Makowski, directeur du département de radiologie diagnostique et interventionnelle du Klinikum rechts der Isar de la TUM. Le chef de projet et premier auteur de l’étude, le Dr Georgios Kaissis de l'Institut d'informatique médicale, de statistique et d'épidémiologie de la TUM, estilme quant à lui que, « pour que les données des patients soient protégées, il ne faut pas qu’elles quittent le site où elles sont collectées. Pour notre algorithme, nous avons utilisé l'apprentissage fédéré, dans lequel l'algorithme de deep learning est partagé - et non les données. »

« Nos modèles ont été formés dans différents hôpitaux en utilisant les données locales puis nous ont été renvoyés. Ainsi, les propriétaires de données n'ont pas eu à les partager leurs données et conservent un contrôle total », explique le premier auteur Alexander Ziller, chercheur à l'Institut de radiologie.

Pour éviter l'identification des institutions où l'algorithme a été formé, l'équipe a appliqué une autre technique, l'agrégation sécurisée. « Nous avons combiné les algorithmes sous forme cryptée et ne les avons décryptés qu'après les avoir formés avec les données de toutes les institutions participantes, explique Kaissis. Et pour garantir une « confidentialité différentielle », c'est-à-dire pour empêcher que les données individuelles des patients ne soient séparées des enregistrements de données, les chercheurs ont utilisé une troisième technique lors de la formation de l'algorithme. « En fin de compte, les corrélations statistiques peuvent être extraites des enregistrements de données, mais pas les contributions des personnes individuelles », explique Kaissis.

Une méthode qui favorise la coopération entre les institutions et la généralisation de l'IA

« Nos méthodes ont été appliquées dans d'autres études, souligne Daniel Rueckert. Mais nous n'avons pas encore vu d'études à grande échelle utilisant des données cliniques réelles. Grâce au développement ciblé de technologies et à la coopération entre spécialistes en informatique et en radiologie, nous avons réussi à former des modèles qui fournissent des résultats précis tout en répondant à des normes élevées de protection des données et de confidentialité. » Les scientifiques ajoutent que leur méthode peut être appliquée à d'autres données médicales que la radiographie, notamment à la parole et au texte.

La combinaison des derniers processus de protection des données facilitera également la coopération entre les institutions, comme l'équipe l'a montré dans un article publié dans Nature Machine Intelligence en 2020. Leur méthode d'IA préservant la vie privée peut surmonter les obstacles éthiques, juridiques et politiques - ouvrant ainsi la voie à utilisation généralisée de l'IA. Et cela est extrêmement important pour la recherche, en particulier sur les maladies rares.

Les scientifiques sont convaincus que leur technologie, en sauvegardant la sphère privée des patients, peut apporter une contribution importante à l'avancement de la médecine numérique.

Bruno Benque avec TUM


Un logiciel d'IA taillé pour le dépistage du cancer du poumon par TDM low dose
03/04/2025 : Median Technologies a publié, le 31 Mars 2025, les résultats finaux de l’étude pivot RELIVE, qui confirment et complètent les premiers résultats annoncés le 3 Février 2025 à propos d’eyonis™, une suite de logiciels dispositifs médicaux basés sur l’IA pour le diagnostic précoce du cancer.

Un CADe français pour la radiographie thoracique obtient l'autorisation FDA
27/03/2025 : La firme française Gleamer a annoncé, le 25 Mars 2025, l’autorisation de mise sur le marché, par la Food and Drug Administration (FDA), de sa solution avancée d’interprétation des radiographies thoraciques, ChestView.

Recommandations européennes pour l'intégration de l'IA dans la radiologie
11/03/2025 : L’European Society of Radiology (ESR), sous la direction de son groupe de travail sur l'IA, vient de publier un document de recommandations pour une implémentation généralisée de l’European AI Act.

L'IA en imagerie thoracique nécessiterait une redéfinition du rôle des radiologues
07/03/2025 : L’imagerie thoracique à la pointe de l’intelligence artificielle. C’est le message que font passer des chercheurs coréens dans un article publié dans la Revue Radiology. Ils listent les applications de cette technologie, comme l’interprétation assistée par l’IA et dépistage opportuniste des maladies non ciblées, mais recommandent une redéfinition proactive du rôle des radiologues essentielle à l’intégration de l’IA en imagerie.

IABM 2025, le colloque pour maitriser l'IA en imagerie biomédicale
11/02/2025 : L’Institut National de Recherche en sciences et technologies du numérique (INRIA)organise, en coopération avec d’autres institutions scientifiques, le 3ème Colloque Français d’Intelligence Artificielle en Imagerie Biomédicale (IABM 2025), les 17 et 18 Mars 2025, au Palais de la Méditerranée à Nice.

Une startup européenne d'IA obtient une importante levée de fonds pour atteindre ses objectifs
27/11/2024 : La plateforme d’IA Raidium agit comme une fabrique de biomarqueurs d’imagerie au service de la pratique clinique et de la recherche. Elle annonce une levée de 13 M$ qui devrait lui permettre de progresser et d’obtenir les certifications FDA et CE.

La confiance des radiologues en l'IA : une arme à double tranchant
19/11/2024 : Lorsqu’ils prennent des décisions diagnostiques aidés par l’Intelligence Artificielle (IA), les radiologues lui font parfois trop confiance alors qu’elle signale une zone d'intérêt spécifique sur une radiographie. C’est en substance ce qui ressort d’une nouvelle étude publiée dans la Revue Radiology.

La lecture des images radiologiques toujours pas au point pour Chat-GPT4 Vision
09/09/2024 : Des chercheurs américains ont réalisé une étude, publiée dans la Revue Radiology, évaluant les performances de ChatGPT-4 Vision, capable d’interpréter du texte et de l’image. Ils ont constaté que le modèle fonctionnait bien sur les questions d'examen de radiologie textuelles, mais qu'il avait du mal à répondre avec précision aux questions liées aux images. Des réponses hallucinatoires suggèrent même des interprétations d’images incorrectes aux conséquences cliniques potentiellement graves.

L'IA vs le radiologue dans l'interprétation de la radiographie pulmonaire
03/09/2024 : Un outil d'intelligence artificielle (IA) utilisé dans une étude danoise publiée dans la Revue Radiology pour interpréter des radiographies pulmonaires s'est avéré efficace pour exclure une pathologie. Il a présenté des taux d'échec critiques sur les radiographies pulmonaires égaux ou inférieurs à ceux des radiologues, ses erreurs se révélant plus graves cliniquement.

Un grand modèle de langage open source pour concurrencer les modèles propriétaires
29/08/2024 : La Revue Radiology publie une étude allemande relative à la performance de Meta Llama 3, un grand modèle de langage open source qui concurrence les grands modèles propriétaires, tels que GPT-4 et Gemini. Les chercheurs ont soumis l’outil à un sous-ensemble de questions d'examen de type jury de radiologie et ont montré la pertinence de Meta Llama 3.


Les performances diagnostiques de l'IRM 3T accélérée six fois
29/04/2025 : L'IRM du genou 3-T accélérée six fois en moins de 5 minutes, utilisant l'imagerie parallèle et l'accélération multicoupes simultanée montre des performances diagnostiques améliorées pour l’exploration du genou. C’est ce que montre une étude publiée dans l’American Journal of Roentgenology (AJR) qui valide les apports de ce protocole en termes de visibilité structurale et d’identification des lésions cartilagineuses ou ligamentaires notamment.

La radiologie libérale en grève contre la proposition de Loi Garot
28/04/2025 : Un travail parlementaire transpartisan a été instauré depuis deux ans pour traiter en urgence le problème des déserts médicaux. Le secteur médical libéral se dresse contre la proposition de Loi Garot sur les autorisations d’installation qui en découle et la FNMR a débuté une grève, avant sa participation à la manifestation nationale du 29 Avril 2025.

LA SFRO organise bientôt l'élection de son nouveau bureau
24/04/2025 : La Société Française de Radiothérapie Oncologique (SFRO) organisera bientôt des élections pour renouveler son Bureau, qui doit comporter dix membres, élus pour 2 ans, ventilés selon trois représentants des CHU et CHG, trois représentants des ESPIC et CLCC, et quatre représentants du secteur libéral.

Thérapies valvulaires adaptées aux variantes anatomiques chez le sujet jeune
23/04/2025 : Dans notre série de procédures interventionnelles en vidéo, voici la session PCR Online diffusée le 16 Avril 2025 qui traitait de l’approche thérapeutique des valves cardiaque selon les différentiations anatomiques chez les jeunes patients.

L'IRM à bas champ étend son domaine clinique
23/04/2025 : Le Laboratoire de recherche en imagerie biomédicale multimodale Biomaps a fait récemment l’acquisition d’une modalité d’IRM bas champ très particulière. Elle pemettra de réaliser de la spirométrie 3D en IRM bas champ et des antennes supraconductrices ultrasensibles permettront d’obtenir des résolutions spatiales équivalentes aux IRM 7T ou 9T.

Évaluer la réponse complète à la chimiothérapie néoadjuvante à l'aide de l'IRM
22/04/2025 : La réponse complète à la chimiothérapie néoadjuvante est difficile à évaluer dans le cancer du sein. Un nouveau modèle utilisant l'IRM qui permettrait de prédire la survie sans récidive e été imaginé dans une étude publiée dans la Revue Radiology, qui combine le score d’hétérogénéité intratumorale et les données cliniques pour prédire la réponse complète eu traitement.

Le lexique radiologique standardisé RadLex fête ses vingt ans
22/04/2025 : RadLex, un lexique radiologique complet développé par la Radiological Society of North America (RSNA) destiné à proposer un langage commun pour communiquer les résultats diagnostiques par les radiologues, célèbre son 20e anniversaire en 2025.

JFR 2025 : les inscriptions sont d'ores et déjà ouvertes !
22/04/2025 : Les prochaines Journées Francophones de Radiologie (JFR) se tiendront du 3 au 6 octobre 2025 au Palais des Congrès de la Porte Maillot, Paris XVIIème. Le Président de l’événement cette année, le Pr Mathieu Lederlin, et son équipe ont choisi pour slogan principal : « La Radiologie, les images d’une vie ».

Quelle technique adopter pour quantifier la graisse dans la stéatose hépatique ?
18/04/2025 : Quelle serait la technique à adopter pour évaluer la quantification graisseuse dans la stétose hépatique à dysfonctionnement métabolique ? Une étude italienne publiée dans l’American Journal of Roentgenology (AJR) expérimente différents critères de ROI en échographie. La fraction de graisse en densité de protons y est utilisée comme référence pour évaluer les meilleurs accords inter opérateurs.

Détection du cancer post-mastectomie par l'IA : les chercheurs doivent persévérer
16/04/2025 : La surveillance des patientes présentant des antécédents de cancer du sein n’étant pas optimale, il est nécessaire d’évaluer les bénéfices de l’IA pour les patientes atteintes d’un cancer du sein post-mastectomie. Une étude coréenne publiée dans la Revue Radiology compare les performances de l’IA à celles des radiologues chez les patientes traitées par mastectomie unilatérale. Un taux de cancer non détectés significatif induit les chercheurs à continuer leurs travaux.


IRM DU SEIN: REHAUSSEMENT DU PARENCHYME COMME PREDICATEUR DE CANCER
13/05/2015 : Le rehaussement parenchymateux en IRM serait un signe favorable à la survenue probable d'un cancer du sein chez les patientes à haut risque. C'est ce qui ressort d'une étude, parue dans Radiology, qui a épluché cinq ans d'examens de dépistage au sein de plusieurs centres.

Les mises à jour des NRD sont inscrites dans la Loi
05/06/2019 : Les dispositions prises par l'ASN concernant la mise à jour des Niveau de Référence Diagnostique (NRD) viennent d'être validées par Arrêté publié au Journal Officiel. Les évaluations en scanner et en interventionnel comprendront 10 patients consécutifs.

Le CAD-RADS pour prédire les événements cardiovasculaires
22/07/2021 : CAD-RADS a récemment fait l’objet de modifications pour préciser les maladies coronariennes à partir du coroscanner. Une étude publiée dans la revue Radiology cherche à savoir si cette classification est pertinente pour prédire les événements cardiovasculaires.

La radiologie libérale en grève contre la proposition de Loi Garot
28/04/2025 : Un travail parlementaire transpartisan a été instauré depuis deux ans pour traiter en urgence le problème des déserts médicaux. Le secteur médical libéral se dresse contre la proposition de Loi Garot sur les autorisations d’installation qui en découle et la FNMR a débuté une grève, avant sa participation à la manifestation nationale du 29 Avril 2025.

Le lexique radiologique standardisé RadLex fête ses vingt ans
22/04/2025 : RadLex, un lexique radiologique complet développé par la Radiological Society of North America (RSNA) destiné à proposer un langage commun pour communiquer les résultats diagnostiques par les radiologues, célèbre son 20e anniversaire en 2025.

Les performances diagnostiques de l'IRM 3T accélérée six fois
29/04/2025 : L'IRM du genou 3-T accélérée six fois en moins de 5 minutes, utilisant l'imagerie parallèle et l'accélération multicoupes simultanée montre des performances diagnostiques améliorées pour l’exploration du genou. C’est ce que montre une étude publiée dans l’American Journal of Roentgenology (AJR) qui valide les apports de ce protocole en termes de visibilité structurale et d’identification des lésions cartilagineuses ou ligamentaires notamment.

Un modèle d'IA peut prédire le cancer du sein à cinq ans
26/03/2024 : Des chercheurs américains ont développé un nouveau modèle d'intelligence artificielle (IA) interprétable pour prédire le risque de cancer du sein sur 5 ans à partir des mammographies, selon une nouvelle étude publiée aujourd'hui dans la Revue Radiology. Ils opensent que cet algorithme pourrait réduire la fréquence du dépistage du cancer du sein.

La vague 2 du Ségur de la Radiologie est lancé
03/03/2025 : L’Agence du Numérique en Santé (ANS) vient de poser les bases d’un accès simplifié aux données de Santé pour les professionnels du secteur. En lançant la vague 2 du Ségur de la Radiologie, elle incite les éditeurs de logiciels d’imagerie à parfaire leur connexion à la DRIMBox et permettra aux acteurs du secteur d’améliorer l’intégration des documents dans le RIS notamment.

Les sociétés savantes se mobilisent pour une radiologie propre
04/03/2025 : L’European Society of Radiology (ESR), en collaboration avec dix sociétés savantes internationales de la discipline, a publié un document commun et un appel à l'action sur la durabilité en radiologie. L’article souligne le besoin urgent d’intégrer des pratiques respectueuses de l’environnement en radiologie tout en garantissant un accès mondial aux soins.

Polypes de vésicule biliaire : Les recommandations de la SRU validées dans une étude
19/02/2024 : Dans une étude publiée dans l'American Journal of Roentgenology (AJR), 10 radiologues abdominaux ont évalué le processus de classification des polypes de vésicule biliaire recommandés par la SRU. Ce travail a validé ces recommandations ciblant le risque de chaque type de lésion ainsi que la prise en charge chirurgicale des patients.