Le protocole de dépistage du cancer du poumon AIR, élaboré au CHU de Nice, s'enrichit de l'Intelligence Artificielle en vue d'identifier des biomarqueurs d'imagerie pour cette pathologie.
Median Technologies, The Imaging Phenomics Company® et le CHU de Nice ont annoncé le 12 mars 2018 avoir signé un accord de collaboration afin d'identifier, par Intelligence Artificielle, des biomarqueurs d'imagerie dans le dépistage du cancer du poumon.
Dans le cadre de cette collaboration, les données d'imagerie médicale de l'étude AIR, que nous avons déjà présenté dans nos colonnes, seront analysées, aux moyens d'algorithmes élaborés par Median Technologies, pour identifier et caractériser les nodules pulmonaires visibles dans les scanners thoraciques des patients.
L'identification de ces biomarqueurs d'imagerie, permettra, à terme, de réduire le nombre de biopsies pour évaluer le caractère éventuellement malin de ces nodules et de faire gagner du temps au patient pour initier son traitement.
Le médecin-chercheur Eric J. Topol et le spécialiste en IA de Harvard, Pranav Rajpurkar plaident en faveur d'une séparation claire des rôles entre les systèmes d'IA et les radiologues dans un éditorial publié dans la Revue Radiology. Ils proposent un cadre que les radiologues doivent adapter à leurs...
28/08/2025 -
Gleamer, acteur française de l’IA médicale, a lancé en juillet dernier sa suite OncoView destinée à assister les radiologues dans la détection précoce du cancer par densitométrie (TDM).
22/08/2025 -
Gleamer a annoncé, le 10 Juillet 2025, la signature d’un partenariat stratégique avec le réseau France Imageries Territoires (FIT) pour le déploiement des solutions Gleamer Copilot® dans l’ensemble des centres d’imagerie du réseau FIT.
29/07/2025 -
Les grands modèles de langage multimodaux seraient-ils capables de réaliser des comptes rendus radiologiques ? Des résultats d’essais contradictoires troublent le ressenti sur les possibilités de GPT-4V, un modèle qui se concentre uniquement sur la précision diagnostique. Une étude publiée dans la R...
21/07/2025 -
Les méthodes d’élaboration des grands modèles de langage sont basées sur des règles qui ne traitent pas efficacement les données non standardisées. Des chercheurs britanniques présentent, dans un article publié dans la Revue European Radiology, RADEX, le nouvel outil d’extraction de données radiolog...
15/07/2025 -
Incontournables pour l’entrainement des modèles de deep learning, les annotations d’images radiologiques sont rébarbatives et chronophages pour les experts qui les créent. Des grands modèles de langage (LLM) pourraient remplacer les annotations humaines, comme l’indique un article scientifique publi...
23/06/2025 -
Radiologues, informaticiens et chercheurs présentent, dans un article publié dans la Revue Radiology, les pièges et les meilleures pratiques pour atténuer les biais des modèles d'intelligence artificielle (IA) en imagerie médicale. Ils présentent une sorte de feuille de route pour des pratiques plus...
13/06/2025 -
Ne manquez aucune actualité en imagerie médicale et radiologie !
Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.