Publicité

Le projet AIR s'enrichit de l'Intelligence Artificielle pour identifier des biomarqueurs

12/03/2018
De Rédaction

Le protocole de dépistage du cancer du poumon AIR, élaboré au CHU de Nice, s'enrichit de l'Intelligence Artificielle en vue d'identifier des biomarqueurs d'imagerie pour cette pathologie.

Median Technologies, The Imaging Phenomics Company® et le CHU de Nice ont annoncé le 12 mars 2018 avoir signé un accord de collaboration afin d'identifier, par Intelligence Artificielle, des biomarqueurs d'imagerie dans le dépistage du cancer du poumon. 

Dans le cadre de cette collaboration, les données d'imagerie médicale de l'étude AIR, que nous avons déjà présenté dans nos colonnes, seront analysées, aux moyens d'algorithmes élaborés par Median Technologies, pour identifier et caractériser les nodules pulmonaires visibles dans les scanners thoraciques des patients. 

L'identification de ces biomarqueurs d'imagerie, permettra, à terme, de réduire le nombre de biopsies pour évaluer le caractère éventuellement malin de ces nodules et de faire gagner du temps au patient pour initier son traitement.

SUR LE MÊME THÈME

IA & Données
Abonné(e)

Des LLM affinés pour aider à la relecture des comptes rendus

Selon une nouvelle étude publiée dans la Revue Radiology, un grand modèle de langage (LLM) améliorerait sensiblement la détection des erreurs dans les comptes rendus de radiologie. Les chercheurs ont utilisé des comptes rendus synthétiques et des données ciblées pour donner au LLM de la légèreté.

23/05/2025 -

IA & Données
Abonné(e)

Agir sur la vulnérabilité des grands modèles de langage en radiologie

Dans un nouvel article spécial publié dans la Revue Radiology, des chercheurs abordent les défis de cybersécurité liés aux grands modèles de langage (LLM). Ils soulignent l'importance de mettre en œuvre des mesures de sécurité pour empêcher leur utilisation malveillante dans le système de Santé et m...

21/05/2025 -

IA & Données
Abonné(e)

Une feuille de route pour atténuer les biais de l'IA

Les biais diagnostiques créés par l’IA relèvent d’un manque d’informations démographiques incluent dans les données de santé. Dans un article publié dans la Revue Radiology, des chercheurs américains décrivent l’importance d’une définition homogène décrivant les groupes démographiques. Un travail qu...

20/05/2025 -

IA & Données
Abonné(e)

Essais sur une RAG pour améliorer les grands modèles de langages en radiologie

Pour renforcer les attributs des grands modèles de langage appliqués à la radiologie, la RAG, qui code les informations dans un espace vectoriel pour affiner les tâches des LLM basées sur la connaissance, semble pertinente. Dans une étude publiée dans la Revue Radiology : Artificial intelligence, de...

05/05/2025 -

IA & Données

Le lexique radiologique standardisé RadLex fête ses vingt ans

RadLex, un lexique radiologique complet développé par la Radiological Society of North America (RSNA) destiné à proposer un langage commun pour communiquer les résultats diagnostiques par les radiologues, célèbre son 20e anniversaire en 2025.

22/04/2025 -

IA & Données
Abonné(e)

La TDM ultra low dose, prochaine norme pour le suivi des jeunes immunodéprimés ?

La tomodensitométrie à ultra-faible dose débruitée par l’IA permet, en appliquant seulement 2% de la dose normale, de diagnostiquer efficacement la pneumonie chez les patients immunodéprimés.  C’est le résultat d’une étude publiée dans la Revue Radiology et qui pourrait ouvrir la voie vers de nouvel...

14/03/2025 -

IA & Données

Recommandations européennes pour l'intégration de l'IA dans la radiologie

L’European Society of Radiology (ESR), sous la direction de son groupe de travail sur l'IA, vient de publier un document de recommandations pour une implémentation généralisée de l’European AI Act.

11/03/2025 -

LETTRE D'INFORMATION

Ne manquez aucune actualité en imagerie médicale et radiologie !

Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.