Publicité

Un outil d'IA efficace pour la segmentation de tumeurs pulmonaires en TDM

Abonné(e)
22/01/2025
De Bruno Benque

Un nouveau modèle de deep learning s’avère prometteur dans la détection et la segmentation des tumeurs pulmonaires, selon une étude publiée dans la Revue Radiology. Les résultats de l’étude pourraient avoir des implications importantes pour le traitement du cancer du poumon dans un avenir proche.

La détection et la segmentation précises des tumeurs pulmonaires à partir de la tomodensitométrie (TDM) sont essentielles pour surveiller la progression du cancer, évaluer les réponses au traitement et planifier la radiothérapie. Actuellement, les cliniciens expérimentés identifient et segmentent manuellement les tumeurs pulmonaires sur des images médicales, un processus chronophage et soumis à la variabilité des médecins.

Un modèle de deep learning entrainé pour détecter et segmenter les tumeurs pulmonaires à partie de la TDM

Bien que des méthodes de deep learning aient été appliquées à la détection et à la segmentation des tumeurs pulmonaires, les études antérieures ont été limitées par de petits ensembles de données, une dépendance aux entrées manuelles et une concentration sur la segmentation de tumeurs pulmonaires uniques, soulignant la nécessité de modèles robustes et automatisés capables de détecter et de segmenter les tumeurs de manière dans divers contextes cliniques.

Accédez à l'intégralité de cet article

Cet article est réservé aux abonnés. Connectez-vous pour y accéder.

En vous abonnant à Thema Radiologie, vous débloquez l’accès à l’ensemble de nos contenus premium : dossiers thématiques, tribunes d’experts, analyses technologiques, interviews et décryptages réglementaires.

Rejoignez une communauté de professionnels engagés dans l’innovation en imagerie médicale et radiologie interventionnelle.

SUR LE MÊME THÈME

IA & Données
Abonné(e)

Des LLM affinés pour aider à la relecture des comptes rendus

Selon une nouvelle étude publiée dans la Revue Radiology, un grand modèle de langage (LLM) améliorerait sensiblement la détection des erreurs dans les comptes rendus de radiologie. Les chercheurs ont utilisé des comptes rendus synthétiques et des données ciblées pour donner au LLM de la légèreté.

23/05/2025 -

IA & Données
Abonné(e)

Agir sur la vulnérabilité des grands modèles de langage en radiologie

Dans un nouvel article spécial publié dans la Revue Radiology, des chercheurs abordent les défis de cybersécurité liés aux grands modèles de langage (LLM). Ils soulignent l'importance de mettre en œuvre des mesures de sécurité pour empêcher leur utilisation malveillante dans le système de Santé et m...

21/05/2025 -

IA & Données
Abonné(e)

Une feuille de route pour atténuer les biais de l'IA

Les biais diagnostiques créés par l’IA relèvent d’un manque d’informations démographiques incluent dans les données de santé. Dans un article publié dans la Revue Radiology, des chercheurs américains décrivent l’importance d’une définition homogène décrivant les groupes démographiques. Un travail qu...

20/05/2025 -

IA & Données
Abonné(e)

Essais sur une RAG pour améliorer les grands modèles de langages en radiologie

Pour renforcer les attributs des grands modèles de langage appliqués à la radiologie, la RAG, qui code les informations dans un espace vectoriel pour affiner les tâches des LLM basées sur la connaissance, semble pertinente. Dans une étude publiée dans la Revue Radiology : Artificial intelligence, de...

05/05/2025 -

IA & Données

Le lexique radiologique standardisé RadLex fête ses vingt ans

RadLex, un lexique radiologique complet développé par la Radiological Society of North America (RSNA) destiné à proposer un langage commun pour communiquer les résultats diagnostiques par les radiologues, célèbre son 20e anniversaire en 2025.

22/04/2025 -

IA & Données
Abonné(e)

La TDM ultra low dose, prochaine norme pour le suivi des jeunes immunodéprimés ?

La tomodensitométrie à ultra-faible dose débruitée par l’IA permet, en appliquant seulement 2% de la dose normale, de diagnostiquer efficacement la pneumonie chez les patients immunodéprimés.  C’est le résultat d’une étude publiée dans la Revue Radiology et qui pourrait ouvrir la voie vers de nouvel...

14/03/2025 -

IA & Données

Recommandations européennes pour l'intégration de l'IA dans la radiologie

L’European Society of Radiology (ESR), sous la direction de son groupe de travail sur l'IA, vient de publier un document de recommandations pour une implémentation généralisée de l’European AI Act.

11/03/2025 -

LETTRE D'INFORMATION

Ne manquez aucune actualité en imagerie médicale et radiologie !

Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.