Publicité

L'IA vs le radiologue dans l'interprétation de la radiographie pulmonaire

Abonné(e)
03/09/2024
De DSIH

Un outil d'intelligence artificielle (IA) utilisé dans une étude danoise publiée dans la Revue Radiology pour interpréter des radiographies pulmonaires s'est avéré efficace pour exclure une pathologie. Il a présenté des taux d'échec critiques sur les radiographies pulmonaires égaux ou inférieurs à ceux des radiologues, ses erreurs se révélant plus graves cliniquement.

Les développements récents de l’IA font l’objet d’un intérêt croissant de la part des gestionnaires de centres d’imagerie, en particulier sur le champ de la radiologie diagnostique de projection en routine. C’est ainsi que les radiographies pulmonaires réalisées sans étiologie particulière, qui sont très nombreuses et à faible valeur ajoutée pour les radiologues, pourraient être gérées par l’IA et ainsi améliorer le flux de travail en fournissant un compte rendu automatique.

Une étude à grande échelle pour comparer le diagnostic de l’IA et celui des radiologues

Des chercheurs danois ont initié une étude, publiée dans la Revue Radiology, qui a pour but d'estimer la proportion de radiographies pulmonaires de base où l'IA pourrait exclure correctement une pathologie sans augmenter les erreurs de diagnostic. Ils ont pris en compte des comptes rendus radiologiques et des données images de 1 961 patients (âge médian 72 ans ; 993 femmes), une radiographie pulmonaire ayant été réalisée par patient dans quatre hôpitaux danois.

Accédez à l'intégralité de cet article

Cet article est réservé aux abonnés. Connectez-vous pour y accéder.

En vous abonnant à Thema Radiologie, vous débloquez l’accès à l’ensemble de nos contenus premium : dossiers thématiques, tribunes d’experts, analyses technologiques, interviews et décryptages réglementaires.

Rejoignez une communauté de professionnels engagés dans l’innovation en imagerie médicale et radiologie interventionnelle.

SUR LE MÊME THÈME

IA & Données
Abonné(e)

Des LLM affinés pour aider à la relecture des comptes rendus

Selon une nouvelle étude publiée dans la Revue Radiology, un grand modèle de langage (LLM) améliorerait sensiblement la détection des erreurs dans les comptes rendus de radiologie. Les chercheurs ont utilisé des comptes rendus synthétiques et des données ciblées pour donner au LLM de la légèreté.

23/05/2025 -

IA & Données
Abonné(e)

Agir sur la vulnérabilité des grands modèles de langage en radiologie

Dans un nouvel article spécial publié dans la Revue Radiology, des chercheurs abordent les défis de cybersécurité liés aux grands modèles de langage (LLM). Ils soulignent l'importance de mettre en œuvre des mesures de sécurité pour empêcher leur utilisation malveillante dans le système de Santé et m...

21/05/2025 -

IA & Données
Abonné(e)

Une feuille de route pour atténuer les biais de l'IA

Les biais diagnostiques créés par l’IA relèvent d’un manque d’informations démographiques incluent dans les données de santé. Dans un article publié dans la Revue Radiology, des chercheurs américains décrivent l’importance d’une définition homogène décrivant les groupes démographiques. Un travail qu...

20/05/2025 -

IA & Données
Abonné(e)

Essais sur une RAG pour améliorer les grands modèles de langages en radiologie

Pour renforcer les attributs des grands modèles de langage appliqués à la radiologie, la RAG, qui code les informations dans un espace vectoriel pour affiner les tâches des LLM basées sur la connaissance, semble pertinente. Dans une étude publiée dans la Revue Radiology : Artificial intelligence, de...

05/05/2025 -

IA & Données

Le lexique radiologique standardisé RadLex fête ses vingt ans

RadLex, un lexique radiologique complet développé par la Radiological Society of North America (RSNA) destiné à proposer un langage commun pour communiquer les résultats diagnostiques par les radiologues, célèbre son 20e anniversaire en 2025.

22/04/2025 -

IA & Données
Abonné(e)

La TDM ultra low dose, prochaine norme pour le suivi des jeunes immunodéprimés ?

La tomodensitométrie à ultra-faible dose débruitée par l’IA permet, en appliquant seulement 2% de la dose normale, de diagnostiquer efficacement la pneumonie chez les patients immunodéprimés.  C’est le résultat d’une étude publiée dans la Revue Radiology et qui pourrait ouvrir la voie vers de nouvel...

14/03/2025 -

IA & Données

Recommandations européennes pour l'intégration de l'IA dans la radiologie

L’European Society of Radiology (ESR), sous la direction de son groupe de travail sur l'IA, vient de publier un document de recommandations pour une implémentation généralisée de l’European AI Act.

11/03/2025 -

LETTRE D'INFORMATION

Ne manquez aucune actualité en imagerie médicale et radiologie !

Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.