Un modèle d’IA de fondation pour la détection de pathologies sur des radiographies thoraciques a démontré des biais raciaux et sexuels conduisant à des performances inégales entre les sous-groupes de patients, selon une étude publiée dans la Revue Radiology: Artificial Intelligence. L’étude vise à mettre en évidence les risques potentiels liés à l’utilisation de ces modèles dans le développement de l’IA en imagerie médicale.
Dans le domaine de l’intelligence artificielle (IA), le modèle de fondation est défini par sa capacité à créer un grand modèle d’IA formé sur une grande quantité de donnée non taguées. On peut le trouver dénommé langage de grande taille ou IA générative.
Des modèles d’IA de fondation utilisés pour élargir les bases de données
En raison de la difficulté de collecter de grands volumes de données de formation de haute qualité, le domaine de l’IA de Santé s’est orienté vers l’utilisation de modèles de fondation de deep learning destinés à d’autres domaines d’étude. Ils ont été formés sur de grands ensembles de données qui gèrent des tâches allant de la traduction de texte à l'analyse d'images médicales.
« De nombreux travaux ont été consacrés au développement de modèles d'IA pour aider les médecins à détecter les maladies grâce aux examens médicaux, commente le Pr Ben Glocker, professeur de machine learning pour l'imagerie à l'Imperial College de Londres (Royaume-Uni). Il est assez difficile d’obtenir suffisamment de données à exploiter pour une maladie spécifique et représentatives de tous les groupes de patients.
En vous abonnant à Thema Radiologie, vous débloquez l’accès à l’ensemble de nos contenus premium : dossiers thématiques, tribunes d’experts, analyses technologiques, interviews et décryptages réglementaires.
Profitez de 15 jours d'essai gratuit pour découvrir tous nos contenus premium !
Déjà abonné ? Connectez-vous pour débloquer cet article.
Le médecin-chercheur Eric J. Topol et le spécialiste en IA de Harvard, Pranav Rajpurkar plaident en faveur d'une séparation claire des rôles entre les systèmes d'IA et les radiologues dans un éditorial publié dans la Revue Radiology. Ils proposent un cadre que les radiologues doivent adapter à leurs...
28/08/2025 -
Gleamer, acteur française de l’IA médicale, a lancé en juillet dernier sa suite OncoView destinée à assister les radiologues dans la détection précoce du cancer par densitométrie (TDM).
22/08/2025 -
Gleamer a annoncé, le 10 Juillet 2025, la signature d’un partenariat stratégique avec le réseau France Imageries Territoires (FIT) pour le déploiement des solutions Gleamer Copilot® dans l’ensemble des centres d’imagerie du réseau FIT.
29/07/2025 -
Les grands modèles de langage multimodaux seraient-ils capables de réaliser des comptes rendus radiologiques ? Des résultats d’essais contradictoires troublent le ressenti sur les possibilités de GPT-4V, un modèle qui se concentre uniquement sur la précision diagnostique. Une étude publiée dans la R...
21/07/2025 -
Les méthodes d’élaboration des grands modèles de langage sont basées sur des règles qui ne traitent pas efficacement les données non standardisées. Des chercheurs britanniques présentent, dans un article publié dans la Revue European Radiology, RADEX, le nouvel outil d’extraction de données radiolog...
15/07/2025 -
Incontournables pour l’entrainement des modèles de deep learning, les annotations d’images radiologiques sont rébarbatives et chronophages pour les experts qui les créent. Des grands modèles de langage (LLM) pourraient remplacer les annotations humaines, comme l’indique un article scientifique publi...
23/06/2025 -
Radiologues, informaticiens et chercheurs présentent, dans un article publié dans la Revue Radiology, les pièges et les meilleures pratiques pour atténuer les biais des modèles d'intelligence artificielle (IA) en imagerie médicale. Ils présentent une sorte de feuille de route pour des pratiques plus...
13/06/2025 -
Ne manquez aucune actualité en imagerie médicale et radiologie !
Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.