Un outil d'apprentissage automatique pour identifier les lésions mammaires à haut risque que l'on doit opérer a été développé à Boston (USA) par le Massachusets General Hospital et le MIT. Une étude publiée dans la revue Radilogy révèle l'efficacité de cet outil d'intelligence artifiielle.
L'Intelligence Artificielle (IA) déboule dans l'univers du diagnostic médical, la conférence FUTURIM des JFR 2017 nous ayant donné un aperçu de ce dont elle était capable. Une nouvelle étude publiée en ligne dans la revue Radiology a pour objet d'évaluer un outil d'apprentissage automatique qui peut aider à identifier les lésions mammaires à haut risque susceptibles de devenir cancéreuses.
Un traitement chirurgical des lésions mammaires à haut risque pas toujours justifié
Les lésions mammaires à haut risque de cancer sont des lésions diagnostiquées par biopsie. En raison de ce risque, l'ablation chirurgicale est souvent l'option de traitement préférée. Cependant, de nombreuses lésions à haut risque ne constituent pas une menace immédiate pour la vie du patient et peuvent être surveillées en toute sécurité par imagerie de suivi, évitant ainsi aux patients les coûts et les complications associés à la chirurgie. "Il existe différents types de lésions à haut risque, a déclaré l'auteur de l'étude, le Dr Manisha Bahl, du Massachusetts General Hospital (MGH) et de la Harvard Medical School, à Boston (Mass., USA). La plupart des établissements recommandent l'excision chirurgicale pour les lésions à haut risque telles que l'hyperplasie canalaire atypique, pour laquelle le risque de survenue d'un cancer est d'environ 20%. Pour d'autres types de lésions à haut risque, le risque d'évolution varie beaucoup dans la littérature, et la prise en charge des patients, y compris la décision d'enlever ou d'examiner la lésion, est différente d'une pratique à l'autre."
Un modèle d'apprentissage automatique qui s'améliore dans le temps
Le Dr Bahl et ses collègues de l'HGM ont étudié l'utilisation d'un outil d'apprentissage automatique pour identifier les lésions à haut risque présentant un faible risque de survenue d'un cancer. L'étude est le fruit d'une collaboration étroite entre des chercheurs du Massachusetts Institute of Technology (MIT) et des experts en imagerie mammaire du MGH. "Parce que les outils de diagnostic sont inexacts, les médecins ont tendance à surévaluer le cancer du sein, a déclaré la coauteure le Dr Regina Barzilay, professeur d'électronique et de génie électrique chez Delta Electronics au MIT. Quand il y a tant d'incertitude dans les données, l'apprentissage automatique est l'outil idéal pour améliorer la détection et prévenir le surtraitement." L'apprentissage automatique est un type d'IA dans lequel un modèle apprend automatiquement et s'améliore à partir d'expériences antérieures. Le modèle développé par les chercheurs a analysé les facteurs de risques traditionnels tels que l'âge du patient et l'histologie de la lésion, ainsi que plusieurs caractéristiques uniques, y compris les mots qui apparaissent dans le texte du rapport de biopsie pathologique. Les chercheurs ont formé le modèle sur un groupe de patients présentant des lésions à haut risque prouvées par biopsie qui ont eu une chirurgie ou au moins un suivi d'imagerie de deux ans. Sur les 1 006 lésions à haut risque identifiées, 115 (11%) ont été considérées comme cancéreuses.
Soutenir des approches plus ciblées et personnalisées
Après avoir entraîné le modèle d'apprentissage automatique sur les deux tiers des lésions à haut risque, les chercheurs l'ont testé sur les 335 lésions restantes. Le modèle a correctement prédit 37 des 38 lésions (97%) considérées comme des cancers. Les chercheurs ont également constaté que l'utilisation du modèle aurait aidé à éviter près d'un tiers des chirurgies bénignes. Le modèle d'apprentissage automatique a identifié les termes "grave" et "grave atypique" dans le texte des comptes rendus d'anapath associés à un plus grand risque de survenue d'un cancer. "Notre étude fournit une preuve de concept que l'apprentissage automatique peut non seulement diminuer la chirurgie inutile de près d'un tiers dans cette population de patients, mais aussi soutenir des approches plus ciblées et personnalisées pour les soins qui leur sont donnés", le Pr Lehman, professeur à la Harvard Medical School et directeur de Breast Imaging à MGH.
"Notre objectif est d'appliquer l'outil dans des contextes cliniques pour aider à prendre des décisions plus éclairées quant aux patients qui seront surveillés et qui iront à la chirurgie, conclut le Dr Bahl. Je crois que nous pouvons capitaliser sur l'apprentissage automatique afin d'éclairer la prise de décision clinique et, au final, améliorer les soins aux patients."
Malgré l’essor de la tomosynthèse, des cas de faux négatifs ou de non-détection de cancers subsistent lors du dépistage du cancer du sein utilisant cette technologie. Une étude publiée dans la Revue European Radiology tente de classer les cancers non détectés en vrais ou faux négatifs en évaluant l’...
02/07/2025 -
La pelvimétrie par IRM, trop coûteuse et trop longue à acquérir dans un contexte obstétrical, pourrait être pertinente en réalisant des séquences ZTE et black bone afin de limiter les contraintes. Une étude belge publiée dans la Revue European Radiology évalue la répétabilité et la reproductibilité...
18/06/2025 -
Les acteurs du dépistage organisé du cancer du sein ont expliqué comment, à l’occasion du congrès de la SIFEM 2025, ils s’associent pour améliorer le taux de participation des femmes. Le groupe de réflexion qu’ils ont constitué estime notamment que les initiatives régionales sont à coordonner et à r...
16/06/2025 -
La Haute Autoritéde Santé (HAS) a récemment publié des recommandations relatives à l’actualisationdes bonnes pratiques d’imagerie dans le cadre de la prise en charge de l’endométriose.
10/06/2025 -
L’Autorité de Sureté Nucléaire et de Radioprotection (ASNR) vient de publier la nouvelle édition du bilan de l’exposition de la population aux rayonnements ionisants (ExPRI) pour l’année 2022.
02/06/2025 -
Dans l'une des plus vastes études du genre, des chercheurs ont identifié six textures mammaires potentiellement associées à un risque accru de cancer. Dans une nouvelle étude publiée dans la Revue Radiology, ils ont identifié, à l’aide de la radiomique, des phénotypes à mieux surveiller car potentie...
16/05/2025 -
La réponse complète à la chimiothérapie néoadjuvante est difficile à évaluer dans le cancer du sein. Un nouveau modèle utilisant l'IRM qui permettrait de prédire la survie sans récidive e été imaginé dans une étude publiée dans la Revue Radiology, qui combine le score d’hétérogénéité intratumorale e...
22/04/2025 -
Ne manquez aucune actualité en imagerie médicale et radiologie !
Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.