La classification, par les algorithmes radiomiques, des nodules non déterminés en tomodensitométrie thoracique pose problème, au sein de la communauté radiologique. Une revue des approches actuelles d’analyse d’images pour cette classification fait l’objet d’un article récent publié dans la Revue Radiology.
La mise en œuvre de la tomodensitométrie (TDM) thoracique à faible dose (LDCT) pour le dépistage pulmonaire présente une opportunité cruciale de faire progresser les soins du cancer du poumon grâce à une détection précoce. En outre, des millions de nodules pulmonaires sont détectés accidentellement chaque année, augmentant ainsi les possibilités de diagnostic précoce du cancer du poumon.
Des pratiques d’acquisition des TDM thoraciques hétérogènes qui n’aident pas à formaliser les méthodes d’apprentissage des algorithmes
Les défis méthodologiques actuellement rencontrés dans la traduction des aides à la décision dans la pratique clinique, ainsi que les obstacles techniques liés aux paramètres d'imagerie hétérogènes, à la sélection optimale des caractéristiques, au choix du modèle et à la nécessité d'ensembles de données d'images bien annotés à des fins de formation et de validation, font l'objet de travaux spécifiques, en vue de l'intégration ultime de ces aides à la décision potentiellement puissantes dans la pratique clinique de routine.
En vous abonnant à Thema Radiologie, vous débloquez l’accès à l’ensemble de nos contenus premium : dossiers thématiques, tribunes d’experts, analyses technologiques, interviews et décryptages réglementaires.
Profitez de 15 jours d'essai gratuit pour découvrir tous nos contenus premium !
Déjà abonné ? Connectez-vous pour débloquer cet article.


Microsoft vient d’annoncer la disponibilité en France de Microsoft Dragon Copilot, un assistant clinique IA conçu pour simplifier la documentation, faciliter la recherche d’informations et automatiser des tâches.
08/10/2025 -

Le programme Ségur Vague 2 pour l’imagerie connaît aujourd’hui son premier point d’étape avec l’enregistrement définitif des candidats au référencement RIS et DRIMbox. Nous avons rencontré Jean-Marc Chevilley, Directeur de Projet au sein de la Délégation au Numérique en Santé, qui est le pilote prin...
07/10/2025 -

Depuis la publication de l'AI Act, l'écosystème de l’imagerie médicale doit se préparer à évoluer, notamment pour gérer le consentement et l’opposition des patients. L'équipe de Dr Data a mis à disposition son expertise en protection des données de santé pour construire une solution et des processus...
04/10/2025 -
Le médecin-chercheur Eric J. Topol et le spécialiste en IA de Harvard, Pranav Rajpurkar plaident en faveur d'une séparation claire des rôles entre les systèmes d'IA et les radiologues dans un éditorial publié dans la Revue Radiology. Ils proposent un cadre que les radiologues doivent adapter à leurs...
28/08/2025 -

Gleamer, acteur française de l’IA médicale, a lancé en juillet dernier sa suite OncoView destinée à assister les radiologues dans la détection précoce du cancer par densitométrie (TDM).
22/08/2025 -

Gleamer a annoncé, le 10 Juillet 2025, la signature d’un partenariat stratégique avec le réseau France Imageries Territoires (FIT) pour le déploiement des solutions Gleamer Copilot® dans l’ensemble des centres d’imagerie du réseau FIT.
29/07/2025 -


Les grands modèles de langage multimodaux seraient-ils capables de réaliser des comptes rendus radiologiques ? Des résultats d’essais contradictoires troublent le ressenti sur les possibilités de GPT-4V, un modèle qui se concentre uniquement sur la précision diagnostique. Une étude publiée dans la R...
21/07/2025 -
Ne manquez aucune actualité en imagerie médicale et radiologie !
Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.