Un modèle de détection de la tuberculose (TB) basé sur le deep learning peut détecter la tuberculose sur une radiographie pulmonaire capturée par une photographie de smartphone.
Un diagnostic précoce de la tuberculose est crucial mais difficile à obtenir dans les pays pauvres. C’est pourquoi TBShoNet, comme se nomme le modèle de deep-learning développé pour en détecter les signes radiologiques sur un smartphone, peut être utile dans ces contrées. Il pourrait aider les prestataires de soins de santé dans ces régions où les radiologues et les images numériques haute résolution ne sont pas disponibles.
Il s'agit de la première étude appliquant le transfert par deep learning des radiographies thoraciques capturées par un smartphone pour le diagnostic de la tuberculose.
Trois ensembles de données accessibles au public ont été utilisés pour le modèle entrainement, transfert et évaluation. Le réseau neuronal a été entrainé sur une base de données contenant 250 044 radiographies pulmonaires avec 14 tags pulmonaires n’identifiant pas la tuberculose. Le modèle a ensuite été recalibré pour les photographies des radiographiques thoraciques en utilisant des méthodes de simulation pour améliorer l'ensemble de données.
Le modèle TBShoNet a été construit en connectant le modèle pré-entraîné à un réseau neuronal à 2 couches supplémentaires formés sur des images de radiographie thoracique augmentées. Puis 662 photographies de radiographiques thoraciques prises par cinq téléphones différents ont été utilisées pour tester la performance du modèle. La sensibilité et la spécificité de ce modèle pour la tuberculose étaient de 81% et 84%, respectivement.
Radiologues, informaticiens et chercheurs présentent, dans un article publié dans la Revue Radiology, les pièges et les meilleures pratiques pour atténuer les biais des modèles d'intelligence artificielle (IA) en imagerie médicale. Ils présentent une sorte de feuille de route pour des pratiques plus...
13/06/2025 -
Selon une nouvelle étude publiée dans la Revue Radiology, un grand modèle de langage (LLM) améliorerait sensiblement la détection des erreurs dans les comptes rendus de radiologie. Les chercheurs ont utilisé des comptes rendus synthétiques et des données ciblées pour donner au LLM de la légèreté.
23/05/2025 -
Dans un nouvel article spécial publié dans la Revue Radiology, des chercheurs abordent les défis de cybersécurité liés aux grands modèles de langage (LLM). Ils soulignent l'importance de mettre en œuvre des mesures de sécurité pour empêcher leur utilisation malveillante dans le système de Santé et m...
21/05/2025 -
Les biais diagnostiques créés par l’IA relèvent d’un manque d’informations démographiques incluent dans les données de santé. Dans un article publié dans la Revue Radiology, des chercheurs américains décrivent l’importance d’une définition homogène décrivant les groupes démographiques. Un travail qu...
20/05/2025 -
Pour renforcer les attributs des grands modèles de langage appliqués à la radiologie, la RAG, qui code les informations dans un espace vectoriel pour affiner les tâches des LLM basées sur la connaissance, semble pertinente. Dans une étude publiée dans la Revue Radiology : Artificial intelligence, de...
05/05/2025 -
RadLex, un lexique radiologique complet développé par la Radiological Society of North America (RSNA) destiné à proposer un langage commun pour communiquer les résultats diagnostiques par les radiologues, célèbre son 20e anniversaire en 2025.
22/04/2025 -
La tomodensitométrie à ultra-faible dose débruitée par l’IA permet, en appliquant seulement 2% de la dose normale, de diagnostiquer efficacement la pneumonie chez les patients immunodéprimés. C’est le résultat d’une étude publiée dans la Revue Radiology et qui pourrait ouvrir la voie vers de nouvel...
14/03/2025 -
Ne manquez aucune actualité en imagerie médicale et radiologie !
Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.