Publicité

Un modèle de deep learning pour identifier le COVID-19 au scanner

08/04/2020
De Bruno Benque avec RSNA

Dans une étude publiée dans la Revue Radiology, un modèle de deep learning semble capable de réaliser un diagnostic différentiel de COVID-19 sur les examens de tomodensitométrie. Ce travail montre surtout que la spécificité du scanner semble améliorée comparativement aux autres études publiées sur ce thème.

La pneumonie due au COVID-19 s'est largement répandue dans le monde depuis le début de 2020, avec un diagnostic préférentiellement obtenu par scanner thoracique. Mais le dépistage par cette voie n’a pas été retenu par manque de spécificité de cet examen pour cette pathologie spécifique.

Un modèle de deep learning pour identifier les lésions de COVID-19

Une étude chinoise publiée le 19 mars 2020 dans la Revue Radiology se propose de développer un cadre entièrement automatique d’Intelligence Artificielle (IA) pour détecter le COVID-19 à l'aide d'une tomodensitométrie thoracique et évaluer ses performances. Dans cette étude rétrospective et multicentrique, un modèle de deep learning, appelé COVNet, a été développé pour extraire les caractéristiques visuelles des scanners thoraciques pour la détection du COVID-19. La pneumonie acquise communautaire (PAC) et d'autres pathologies sans pneumonie ont été incluses pour tester la robustesse du modèle. Les ensembles de données ont été collectés dans 6 hôpitaux entre août 2016 et février 2020. La performance diagnostique a été évaluée par la sensibilité et la spécificité du scanner pour chaque groupe de pathologies.

Des résultats qui améliorent la spécificité du scanner pour le diagnostic différentiel

L'ensemble de données collectées comprenait 4356 examens de scanners thoraciques de 3 322 patients d'âge moyen de 49 (± 15) ans avec un peu plus de patients masculins que de femmes (1838 vs 1484). La sensibilité et la spécificité par examen pour détecter le COVID-19 par cet outil d’IA étaient respectivement de 114 sur 127 (90%) et 294 sur 307 (96%). La sensibilité et la spécificité par examen pour détecter la CAP étaient respectivement de 87% (152 sur 175) et 92% (239 sur 259).

Pour améliorer l'interprétabilité de ce modèle, les chercheurs ont adopté la méthode de Mapping Grad-CAM pour visualiser les régions importantes menant à la décision du modèle de deep learning. Une telle carte thermique est entièrement générée par le modèle sans annotation manuelle supplémentaire. Elle permet d’identifier les régions suspectées dans les images pour le COVID, la PAC et le parenchyme normal. Ces cartes thermiques ont montré que l’algorithme utilisé accordait le plus d'attention aux régions anormales tout en ignorant les régions de type normal, comme le montre l'exemple sans pneumonie.

Les résultats de cette étude ont ainsi montré qu’un modèle de deep learning peut détecter avec précision le COVID-19, avec une spécificité rarement atteinte jusqu’alors, et le différencier de la pneumonie acquise communautaire et d'autres maladies pulmonaires.

SUR LE MÊME THÈME

IA & Données

Trouver le modèle qui puisse efficacement intégrer l'IA dans le flux de travail du radiologue

Le médecin-chercheur Eric J. Topol et le spécialiste en IA de Harvard, Pranav Rajpurkar plaident en faveur d'une séparation claire des rôles entre les systèmes d'IA et les radiologues dans un éditorial publié dans la Revue Radiology. Ils proposent un cadre que les radiologues doivent adapter à leurs...

28/08/2025 -

IA & Données
Un acteur français de l'IA propose deux outils TDM pour la détection du cancer

Un acteur français de l'IA propose deux outils TDM pour la détection du cancer

Gleamer, acteur française de l’IA médicale, a lancé en juillet dernier sa suite OncoView destinée à assister les radiologues dans la détection précoce du cancer par densitométrie (TDM).

22/08/2025 -

IA & Données
Un réseau de radiologues français conclut un accord avec un fournisseur d'IA pour le diagnostic

Un réseau de radiologues français conclut un accord avec un fournisseur d'IA pour le diagnostic

Gleamer a annoncé, le 10 Juillet 2025, la signature d’un partenariat stratégique avec le réseau France Imageries Territoires (FIT) pour le déploiement des solutions Gleamer Copilot® dans l’ensemble des centres d’imagerie du réseau FIT.

29/07/2025 -

IA & Données
Les comptes rendus radiologiques ne sont pas près de passer par GPT-4
Abonné(e)

Les comptes rendus radiologiques ne sont pas près de passer par GPT-4

Les grands modèles de langage multimodaux seraient-ils capables de réaliser des comptes rendus radiologiques ? Des résultats d’essais contradictoires troublent le ressenti sur les possibilités de GPT-4V, un modèle qui se concentre uniquement sur la précision diagnostique. Une étude publiée dans la R...

21/07/2025 -

IA & Données
Un nouvel outil d'extraction de données spécialisé en radiologie

Un nouvel outil d'extraction de données spécialisé en radiologie

Les méthodes d’élaboration des grands modèles de langage sont basées sur des règles qui ne traitent pas efficacement les données non standardisées. Des chercheurs britanniques présentent, dans un article publié dans la Revue European Radiology, RADEX, le nouvel outil d’extraction de données radiolog...

15/07/2025 -

IA & Données
Des grands modèles de langage sensés participer à l'annotation des images pour le deep learning
Abonné(e)

Des grands modèles de langage sensés participer à l'annotation des images pour le deep learning

Incontournables pour l’entrainement des modèles de deep learning, les annotations d’images radiologiques sont rébarbatives et chronophages pour les experts qui les créent. Des grands modèles de langage (LLM) pourraient remplacer les annotations humaines, comme l’indique un article scientifique publi...

23/06/2025 -

IA & Données
Les bonnes pratiques pour l'évaluation de la pertinence d'un outil d'IA en imagerie
Abonné(e)

Les bonnes pratiques pour l'évaluation de la pertinence d'un outil d'IA en imagerie

Radiologues, informaticiens et chercheurs présentent, dans un article publié dans la Revue Radiology, les pièges et les meilleures pratiques pour atténuer les biais des modèles d'intelligence artificielle (IA) en imagerie médicale. Ils présentent une sorte de feuille de route pour des pratiques plus...

13/06/2025 -

LETTRE D'INFORMATION

Ne manquez aucune actualité en imagerie médicale et radiologie !

Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.