Des chercheurs suisses présentent, dans un article publié dans la Revue Radiology, un modèle d'IA robuste de leur création qui segmente automatiquement les principales structures anatomiques dans les images IRM, indépendamment de la séquence. Ce modèle d’IA est capable de segmenter les images d’IRM et de TDM et ses performances inégalées pourraient également être utile pour le suivi de traitement ou le dépistage opportuniste.
Pour une interprétation approfondie des images en IRM, les organes, les muscles et les os, les radiologues segmentent les différentes régions anatomiques manuellement. Mais, dans leur pratique, ils pourraient gagner du temps s’ils disposaient d’un modèle d'IA robuste qui segmente automatiquement les principales structures anatomiques dans les images IRM, indépendamment de la séquence. Une équipe suisse vient de créer un tel outil et le présente dans un article publié dans la Revue Radiology.
Une segmentation automatique des régions anatomiques en IRM pour un flux de travail amélioré et plus de précision diagnostique
« Les images IRM sont traditionnellement segmentées manuellement, ce qui est un processus chronophage qui nécessite des efforts intensifs de la part des radiologues et qui est sujet à une variabilité inter-lecteurs, remarque le Pr Jakob Wasserthal, chercheur au département de radiologie de l'hôpital universitaire de Bâle (Suisse). Les systèmes automatisés peuvent potentiellement réduire la charge de travail des radiologues, minimiser les erreurs humaines et fournir des résultats plus cohérents et reproductibles. »
Cet article est réservé aux abonnés. Connectez-vous pour y accéder.
En vous abonnant à Thema Radiologie, vous débloquez l’accès à l’ensemble de nos contenus premium : dossiers thématiques, tribunes d’experts, analyses technologiques, interviews et décryptages réglementaires.
Rejoignez une communauté de professionnels engagés dans l’innovation en imagerie médicale et radiologie interventionnelle.
Radiologues, informaticiens et chercheurs présentent, dans un article publié dans la Revue Radiology, les pièges et les meilleures pratiques pour atténuer les biais des modèles d'intelligence artificielle (IA) en imagerie médicale. Ils présentent une sorte de feuille de route pour des pratiques plus...
13/06/2025 -
Selon une nouvelle étude publiée dans la Revue Radiology, un grand modèle de langage (LLM) améliorerait sensiblement la détection des erreurs dans les comptes rendus de radiologie. Les chercheurs ont utilisé des comptes rendus synthétiques et des données ciblées pour donner au LLM de la légèreté.
23/05/2025 -
Dans un nouvel article spécial publié dans la Revue Radiology, des chercheurs abordent les défis de cybersécurité liés aux grands modèles de langage (LLM). Ils soulignent l'importance de mettre en œuvre des mesures de sécurité pour empêcher leur utilisation malveillante dans le système de Santé et m...
21/05/2025 -
Les biais diagnostiques créés par l’IA relèvent d’un manque d’informations démographiques incluent dans les données de santé. Dans un article publié dans la Revue Radiology, des chercheurs américains décrivent l’importance d’une définition homogène décrivant les groupes démographiques. Un travail qu...
20/05/2025 -
Pour renforcer les attributs des grands modèles de langage appliqués à la radiologie, la RAG, qui code les informations dans un espace vectoriel pour affiner les tâches des LLM basées sur la connaissance, semble pertinente. Dans une étude publiée dans la Revue Radiology : Artificial intelligence, de...
05/05/2025 -
RadLex, un lexique radiologique complet développé par la Radiological Society of North America (RSNA) destiné à proposer un langage commun pour communiquer les résultats diagnostiques par les radiologues, célèbre son 20e anniversaire en 2025.
22/04/2025 -
La tomodensitométrie à ultra-faible dose débruitée par l’IA permet, en appliquant seulement 2% de la dose normale, de diagnostiquer efficacement la pneumonie chez les patients immunodéprimés. C’est le résultat d’une étude publiée dans la Revue Radiology et qui pourrait ouvrir la voie vers de nouvel...
14/03/2025 -
Ne manquez aucune actualité en imagerie médicale et radiologie !
Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.