Des chercheurs suisses présentent, dans un article publié dans la Revue Radiology, un modèle d'IA robuste de leur création qui segmente automatiquement les principales structures anatomiques dans les images IRM, indépendamment de la séquence. Ce modèle d’IA est capable de segmenter les images d’IRM et de TDM et ses performances inégalées pourraient également être utile pour le suivi de traitement ou le dépistage opportuniste.
Pour une interprétation approfondie des images en IRM, les organes, les muscles et les os, les radiologues segmentent les différentes régions anatomiques manuellement. Mais, dans leur pratique, ils pourraient gagner du temps s’ils disposaient d’un modèle d'IA robuste qui segmente automatiquement les principales structures anatomiques dans les images IRM, indépendamment de la séquence. Une équipe suisse vient de créer un tel outil et le présente dans un article publié dans la Revue Radiology.
Une segmentation automatique des régions anatomiques en IRM pour un flux de travail amélioré et plus de précision diagnostique
« Les images IRM sont traditionnellement segmentées manuellement, ce qui est un processus chronophage qui nécessite des efforts intensifs de la part des radiologues et qui est sujet à une variabilité inter-lecteurs, remarque le Pr Jakob Wasserthal, chercheur au département de radiologie de l'hôpital universitaire de Bâle (Suisse). Les systèmes automatisés peuvent potentiellement réduire la charge de travail des radiologues, minimiser les erreurs humaines et fournir des résultats plus cohérents et reproductibles. »
En vous abonnant à Thema Radiologie, vous débloquez l’accès à l’ensemble de nos contenus premium : dossiers thématiques, tribunes d’experts, analyses technologiques, interviews et décryptages réglementaires.
Profitez de 15 jours d'essai gratuit pour découvrir tous nos contenus premium !
Déjà abonné ? Connectez-vous pour débloquer cet article.


Microsoft vient d’annoncer la disponibilité en France de Microsoft Dragon Copilot, un assistant clinique IA conçu pour simplifier la documentation, faciliter la recherche d’informations et automatiser des tâches.
08/10/2025 -

Le programme Ségur Vague 2 pour l’imagerie connaît aujourd’hui son premier point d’étape avec l’enregistrement définitif des candidats au référencement RIS et DRIMbox. Nous avons rencontré Jean-Marc Chevilley, Directeur de Projet au sein de la Délégation au Numérique en Santé, qui est le pilote prin...
07/10/2025 -

Depuis la publication de l'AI Act, l'écosystème de l’imagerie médicale doit se préparer à évoluer, notamment pour gérer le consentement et l’opposition des patients. L'équipe de Dr Data a mis à disposition son expertise en protection des données de santé pour construire une solution et des processus...
04/10/2025 -
Le médecin-chercheur Eric J. Topol et le spécialiste en IA de Harvard, Pranav Rajpurkar plaident en faveur d'une séparation claire des rôles entre les systèmes d'IA et les radiologues dans un éditorial publié dans la Revue Radiology. Ils proposent un cadre que les radiologues doivent adapter à leurs...
28/08/2025 -

Gleamer, acteur française de l’IA médicale, a lancé en juillet dernier sa suite OncoView destinée à assister les radiologues dans la détection précoce du cancer par densitométrie (TDM).
22/08/2025 -

Gleamer a annoncé, le 10 Juillet 2025, la signature d’un partenariat stratégique avec le réseau France Imageries Territoires (FIT) pour le déploiement des solutions Gleamer Copilot® dans l’ensemble des centres d’imagerie du réseau FIT.
29/07/2025 -


Les grands modèles de langage multimodaux seraient-ils capables de réaliser des comptes rendus radiologiques ? Des résultats d’essais contradictoires troublent le ressenti sur les possibilités de GPT-4V, un modèle qui se concentre uniquement sur la précision diagnostique. Une étude publiée dans la R...
21/07/2025 -
Ne manquez aucune actualité en imagerie médicale et radiologie !
Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.