Publicité

Quand IRM et IA permettent de caractériser les sous-types moléculaires HER2

Abonné(e)
21/10/2024
De Rédaction

La caractérisation HER2 des lésions mammaires peut différer selon la méthode de biopsie utilisée. Du deep learning radiomique appliqué à l’IRM multiparamétrique est capable d’identifier les sous-types moléculaires, ce qu’une étude publiée dans l'American Journal of Roentgenology (AJR) tente de confirmer, notamment en expliquant la méthodologie d’identification des sous-types moléculaires par deep learning radiomique.

La prise en charge actuelle du cancer du sein se concentre principalement sur les caractéristiques pathologiques traditionnelles, en mettant l'accent sur l'expression du récepteur des œstrogènes (ER), du récepteur de la progestérone (PR) et de HER2.

Une caractérisation HER2 pouvant différer selon la méthode de biopsie

L'expression de HER2, évaluée par coloration immunohistochimique (IHC) et hybridation fluorescente in situ (FISH), classe les lésions en HER2-négatif, générant des traitements en fonction de leurs statuts ER, HER2-positif ou HER2-low, de plus en plus reconnu comme un nouveau sous-type moléculaire du cancer du sein avec caractéristiques biologiques uniques.

Mais il se trouve que l'expression de HER2 déterminée par biopsie à l'aiguille peut ne pas correspondre à celle déterminée par biopsie chirurgicale en raison d'un biais d'échantillonnage, ce qui entrainerait des résultats sous-optimaux en termes de traitement. En conséquence, un outil non invasif précis pour une classification complète de l’expression de HER2 à trois niveaux (HER2-zéro, HER2-faible, HER2-positif) reste nécessaire.

Accédez à l'intégralité de cet article

En vous abonnant à Thema Radiologie, vous débloquez l’accès à l’ensemble de nos contenus premium : dossiers thématiques, tribunes d’experts, analyses technologiques, interviews et décryptages réglementaires.

Profitez de 15 jours d'essai gratuit pour découvrir tous nos contenus premium !

Déjà abonné ?  Connectez-vous pour débloquer cet article.

SUR LE MÊME THÈME

IA & Données
Un assistant clinique IA qui optimise le workflow médical
Abonné(e)

Un assistant clinique IA qui optimise le workflow médical

Microsoft vient d’annoncer la disponibilité en France de Microsoft Dragon Copilot, un assistant clinique IA conçu pour simplifier la documentation, faciliter la recherche d’informations et automatiser des tâches.

08/10/2025 -

IA & Données
Comment la DRIMbox améliore la qualité et la pertinence des examens d'imagerie

Comment la DRIMbox améliore la qualité et la pertinence des examens d'imagerie

Le programme Ségur Vague 2 pour l’imagerie connaît aujourd’hui son premier point d’étape avec l’enregistrement définitif des candidats au référencement RIS et DRIMbox. Nous avons rencontré Jean-Marc Chevilley, Directeur de Projet au sein de la Délégation au Numérique en Santé, qui est le pilote prin...

07/10/2025 -

IA & Données
Dr Data accélère l’IA et la recherche grâce au e-consentement en radiologie

Dr Data accélère l’IA et la recherche grâce au e-consentement en radiologie

Depuis la publication de l'AI Act, l'écosystème de l’imagerie médicale doit se préparer à évoluer, notamment pour gérer le consentement et l’opposition des patients. L'équipe de Dr Data a mis à disposition son expertise en protection des données de santé pour construire une solution et des processus...

04/10/2025 -

IA & Données

Trouver le modèle qui puisse efficacement intégrer l'IA dans le flux de travail du radiologue

Le médecin-chercheur Eric J. Topol et le spécialiste en IA de Harvard, Pranav Rajpurkar plaident en faveur d'une séparation claire des rôles entre les systèmes d'IA et les radiologues dans un éditorial publié dans la Revue Radiology. Ils proposent un cadre que les radiologues doivent adapter à leurs...

28/08/2025 -

IA & Données
Un acteur français de l'IA propose deux outils TDM pour la détection du cancer

Un acteur français de l'IA propose deux outils TDM pour la détection du cancer

Gleamer, acteur française de l’IA médicale, a lancé en juillet dernier sa suite OncoView destinée à assister les radiologues dans la détection précoce du cancer par densitométrie (TDM).

22/08/2025 -

IA & Données
Un réseau de radiologues français conclut un accord avec un fournisseur d'IA pour le diagnostic

Un réseau de radiologues français conclut un accord avec un fournisseur d'IA pour le diagnostic

Gleamer a annoncé, le 10 Juillet 2025, la signature d’un partenariat stratégique avec le réseau France Imageries Territoires (FIT) pour le déploiement des solutions Gleamer Copilot® dans l’ensemble des centres d’imagerie du réseau FIT.

29/07/2025 -

IA & Données
Les comptes rendus radiologiques ne sont pas près de passer par GPT-4
Abonné(e)

Les comptes rendus radiologiques ne sont pas près de passer par GPT-4

Les grands modèles de langage multimodaux seraient-ils capables de réaliser des comptes rendus radiologiques ? Des résultats d’essais contradictoires troublent le ressenti sur les possibilités de GPT-4V, un modèle qui se concentre uniquement sur la précision diagnostique. Une étude publiée dans la R...

21/07/2025 -

LETTRE D'INFORMATION

Ne manquez aucune actualité en imagerie médicale et radiologie !

Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.