La caractérisation HER2 des lésions mammaires peut différer selon la méthode de biopsie utilisée. Du deep learning radiomique appliqué à l’IRM multiparamétrique est capable d’identifier les sous-types moléculaires, ce qu’une étude publiée dans l'American Journal of Roentgenology (AJR) tente de confirmer, notamment en expliquant la méthodologie d’identification des sous-types moléculaires par deep learning radiomique.
La prise en charge actuelle du cancer du sein se concentre principalement sur les caractéristiques pathologiques traditionnelles, en mettant l'accent sur l'expression du récepteur des œstrogènes (ER), du récepteur de la progestérone (PR) et de HER2.
Une caractérisation HER2 pouvant différer selon la méthode de biopsie
L'expression de HER2, évaluée par coloration immunohistochimique (IHC) et hybridation fluorescente in situ (FISH), classe les lésions en HER2-négatif, générant des traitements en fonction de leurs statuts ER, HER2-positif ou HER2-low, de plus en plus reconnu comme un nouveau sous-type moléculaire du cancer du sein avec caractéristiques biologiques uniques.
Mais il se trouve que l'expression de HER2 déterminée par biopsie à l'aiguille peut ne pas correspondre à celle déterminée par biopsie chirurgicale en raison d'un biais d'échantillonnage, ce qui entrainerait des résultats sous-optimaux en termes de traitement. En conséquence, un outil non invasif précis pour une classification complète de l’expression de HER2 à trois niveaux (HER2-zéro, HER2-faible, HER2-positif) reste nécessaire.
En vous abonnant à Thema Radiologie, vous débloquez l’accès à l’ensemble de nos contenus premium : dossiers thématiques, tribunes d’experts, analyses technologiques, interviews et décryptages réglementaires.
Profitez de 15 jours d'essai gratuit pour découvrir tous nos contenus premium !
Déjà abonné ? Connectez-vous pour débloquer cet article.


Microsoft vient d’annoncer la disponibilité en France de Microsoft Dragon Copilot, un assistant clinique IA conçu pour simplifier la documentation, faciliter la recherche d’informations et automatiser des tâches.
08/10/2025 -

Le programme Ségur Vague 2 pour l’imagerie connaît aujourd’hui son premier point d’étape avec l’enregistrement définitif des candidats au référencement RIS et DRIMbox. Nous avons rencontré Jean-Marc Chevilley, Directeur de Projet au sein de la Délégation au Numérique en Santé, qui est le pilote prin...
07/10/2025 -

Depuis la publication de l'AI Act, l'écosystème de l’imagerie médicale doit se préparer à évoluer, notamment pour gérer le consentement et l’opposition des patients. L'équipe de Dr Data a mis à disposition son expertise en protection des données de santé pour construire une solution et des processus...
04/10/2025 -
Le médecin-chercheur Eric J. Topol et le spécialiste en IA de Harvard, Pranav Rajpurkar plaident en faveur d'une séparation claire des rôles entre les systèmes d'IA et les radiologues dans un éditorial publié dans la Revue Radiology. Ils proposent un cadre que les radiologues doivent adapter à leurs...
28/08/2025 -

Gleamer, acteur française de l’IA médicale, a lancé en juillet dernier sa suite OncoView destinée à assister les radiologues dans la détection précoce du cancer par densitométrie (TDM).
22/08/2025 -

Gleamer a annoncé, le 10 Juillet 2025, la signature d’un partenariat stratégique avec le réseau France Imageries Territoires (FIT) pour le déploiement des solutions Gleamer Copilot® dans l’ensemble des centres d’imagerie du réseau FIT.
29/07/2025 -


Les grands modèles de langage multimodaux seraient-ils capables de réaliser des comptes rendus radiologiques ? Des résultats d’essais contradictoires troublent le ressenti sur les possibilités de GPT-4V, un modèle qui se concentre uniquement sur la précision diagnostique. Une étude publiée dans la R...
21/07/2025 -
Ne manquez aucune actualité en imagerie médicale et radiologie !
Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.