Publicité

Un modèle de deep learning pour identifier le COVID-19 au scanner

08/04/2020
De Bruno Benque avec RSNA

Dans une étude publiée dans la Revue Radiology, un modèle de deep learning semble capable de réaliser un diagnostic différentiel de COVID-19 sur les examens de tomodensitométrie. Ce travail montre surtout que la spécificité du scanner semble améliorée comparativement aux autres études publiées sur ce thème.

La pneumonie due au COVID-19 s'est largement répandue dans le monde depuis le début de 2020, avec un diagnostic préférentiellement obtenu par scanner thoracique. Mais le dépistage par cette voie n’a pas été retenu par manque de spécificité de cet examen pour cette pathologie spécifique.

Un modèle de deep learning pour identifier les lésions de COVID-19

Une étude chinoise publiée le 19 mars 2020 dans la Revue Radiology se propose de développer un cadre entièrement automatique d’Intelligence Artificielle (IA) pour détecter le COVID-19 à l'aide d'une tomodensitométrie thoracique et évaluer ses performances. Dans cette étude rétrospective et multicentrique, un modèle de deep learning, appelé COVNet, a été développé pour extraire les caractéristiques visuelles des scanners thoraciques pour la détection du COVID-19. La pneumonie acquise communautaire (PAC) et d'autres pathologies sans pneumonie ont été incluses pour tester la robustesse du modèle. Les ensembles de données ont été collectés dans 6 hôpitaux entre août 2016 et février 2020. La performance diagnostique a été évaluée par la sensibilité et la spécificité du scanner pour chaque groupe de pathologies.

Des résultats qui améliorent la spécificité du scanner pour le diagnostic différentiel

L'ensemble de données collectées comprenait 4356 examens de scanners thoraciques de 3 322 patients d'âge moyen de 49 (± 15) ans avec un peu plus de patients masculins que de femmes (1838 vs 1484). La sensibilité et la spécificité par examen pour détecter le COVID-19 par cet outil d’IA étaient respectivement de 114 sur 127 (90%) et 294 sur 307 (96%). La sensibilité et la spécificité par examen pour détecter la CAP étaient respectivement de 87% (152 sur 175) et 92% (239 sur 259).

Pour améliorer l'interprétabilité de ce modèle, les chercheurs ont adopté la méthode de Mapping Grad-CAM pour visualiser les régions importantes menant à la décision du modèle de deep learning. Une telle carte thermique est entièrement générée par le modèle sans annotation manuelle supplémentaire. Elle permet d’identifier les régions suspectées dans les images pour le COVID, la PAC et le parenchyme normal. Ces cartes thermiques ont montré que l’algorithme utilisé accordait le plus d'attention aux régions anormales tout en ignorant les régions de type normal, comme le montre l'exemple sans pneumonie.

Les résultats de cette étude ont ainsi montré qu’un modèle de deep learning peut détecter avec précision le COVID-19, avec une spécificité rarement atteinte jusqu’alors, et le différencier de la pneumonie acquise communautaire et d'autres maladies pulmonaires.

SUR LE MÊME THÈME

IA & Données
Les bonnes pratiques pour l'évaluation de la pertinence d'un outil d'IA en imagerie
Abonné(e)

Les bonnes pratiques pour l'évaluation de la pertinence d'un outil d'IA en imagerie

Radiologues, informaticiens et chercheurs présentent, dans un article publié dans la Revue Radiology, les pièges et les meilleures pratiques pour atténuer les biais des modèles d'intelligence artificielle (IA) en imagerie médicale. Ils présentent une sorte de feuille de route pour des pratiques plus...

13/06/2025 -

IA & Données
Abonné(e)

Des LLM affinés pour aider à la relecture des comptes rendus

Selon une nouvelle étude publiée dans la Revue Radiology, un grand modèle de langage (LLM) améliorerait sensiblement la détection des erreurs dans les comptes rendus de radiologie. Les chercheurs ont utilisé des comptes rendus synthétiques et des données ciblées pour donner au LLM de la légèreté.

23/05/2025 -

IA & Données
Abonné(e)

Agir sur la vulnérabilité des grands modèles de langage en radiologie

Dans un nouvel article spécial publié dans la Revue Radiology, des chercheurs abordent les défis de cybersécurité liés aux grands modèles de langage (LLM). Ils soulignent l'importance de mettre en œuvre des mesures de sécurité pour empêcher leur utilisation malveillante dans le système de Santé et m...

21/05/2025 -

IA & Données
Abonné(e)

Une feuille de route pour atténuer les biais de l'IA

Les biais diagnostiques créés par l’IA relèvent d’un manque d’informations démographiques incluent dans les données de santé. Dans un article publié dans la Revue Radiology, des chercheurs américains décrivent l’importance d’une définition homogène décrivant les groupes démographiques. Un travail qu...

20/05/2025 -

IA & Données
Abonné(e)

Essais sur une RAG pour améliorer les grands modèles de langages en radiologie

Pour renforcer les attributs des grands modèles de langage appliqués à la radiologie, la RAG, qui code les informations dans un espace vectoriel pour affiner les tâches des LLM basées sur la connaissance, semble pertinente. Dans une étude publiée dans la Revue Radiology : Artificial intelligence, de...

05/05/2025 -

IA & Données

Le lexique radiologique standardisé RadLex fête ses vingt ans

RadLex, un lexique radiologique complet développé par la Radiological Society of North America (RSNA) destiné à proposer un langage commun pour communiquer les résultats diagnostiques par les radiologues, célèbre son 20e anniversaire en 2025.

22/04/2025 -

IA & Données
Abonné(e)

La TDM ultra low dose, prochaine norme pour le suivi des jeunes immunodéprimés ?

La tomodensitométrie à ultra-faible dose débruitée par l’IA permet, en appliquant seulement 2% de la dose normale, de diagnostiquer efficacement la pneumonie chez les patients immunodéprimés.  C’est le résultat d’une étude publiée dans la Revue Radiology et qui pourrait ouvrir la voie vers de nouvel...

14/03/2025 -

LETTRE D'INFORMATION

Ne manquez aucune actualité en imagerie médicale et radiologie !

Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.