Vous êtes dans : Accueil > Actualités > Intelligence Artificielle, Machine Learning > Des modèles pertinents de deep learning pour la radiographie thoracique

Des modèles pertinents de deep learning pour la radiographie thoracique

MARDI 03 DéCEMBRE 2019 Soyez le premier à réagirSoyez le premier à réagir

Selon une étude publiée dans la revue Radiology, le deep learning peut détecter des résultats de radiographie thoracique cliniquement significatifs aussi efficacement que des radiologues expérimentés. Les chercheurs rapportent que leurs résultats pourraient constituer une ressource précieuse pour le développement futur de modèles d’intelligence artificielle pour la radiographie thoracique.

RSNA

La radiographie thoracique a, depuis longtemps atteint ses limites en termes de diagnostic, notamment depuis la généralisation du scanner. Il n’empêche que cet examen a toujours son utilité et reste celui qui est le plus pratiqué dans le monde.

Des modèles combinant des données du Royaume-Uni et d’Inde

« Nous avons constaté que l’interprétation des radiographies du thorax est très subjective, a déclaré Shravya Shetty, responsable de l’ingénierie chez Google Health à Palo Alto, en Californie et co-auteur d’une étude publiée dans la Revue Radiology. Une variabilité significative entre les lecteurs et une sensibilité non optimale pour la détection de résultats cliniques importants peuvent limiter son efficacité. » Le deep learning a le potentiel d'améliorer l'interprétation des radiographies du thorax, mais il a aussi des limites. Par exemple, les résultats obtenus d'un groupe de patients ne peuvent pas toujours être généralisés à la population en général.

Les chercheurs de Google Health ont développé des modèles de deep learning dans ce cadre, permettant de surmonter certaines de ces limitations. Ils ont utilisé deux grands ensembles de données pour développer, former et tester les modèles. Le premier ensemble de données comprenait plus de 750 000 images provenant de cinq hôpitaux en Inde, tandis que le second ensemble comprenait 112 120 images mises à la disposition du public par le National Institutes of Health (NIH).

Des résultats identiques aux radiologues pour certaines images significatives

Un groupe de radiologues s'est réuni pour créer les annotations d’images pour certaines anomalies visibles sur les radiographies thoraciques utilisées pour former les modèles. « L'interprétation des radiographies thoraciques est souvent une évaluation qualitative, ce qui pose problème du point de vue du deep learning, poursuit Daniel Tse, chef de produit chez Google Health. En utilisant un champ plus large et plus diversifié de données de radiographie thoracique et en les évaluant par panel, nous avons pu produire des modèles plus fiables. »

Les tests des modèles de deep learning ont montré que leurs résultats étaient comparables à ceux des radiologues en détectant quatre types d’images significatives sur les radiographies thoraciques de face : fractures, nodules ou masses, opacités et pneumothorax. L’évaluation des radiologues a conduit à un consensus plus évolué des experts sur les annotations utilisées pour le paramétrage du modèle et sur l'évaluation de la performance. Le consensus global est passé d’un peu plus de 41% après la lecture initiale à plus de 97% après l’utilisation de la nouvelle cohorte.

Développer des modèles d'intelligence artificielle cliniquement utiles pour la radiographie thoracique

Les techniques d'évaluation de modèle rigoureuses présentent des avantages par rapport aux méthodes existantes, ont déclaré les chercheurs. Tout d’abord parce qu’elles mettent en jeu un vaste ensemble d'images cliniques en milieu hospitalier, par l’échantillonnage d’un ensemble divers de cas ensuite, et enfin parce que des métriques ajustées en fonction de la population donnent des résultats plus représentatifs et comparables. « Nous pensons que l'échantillonnage de données utilisé dans ce travail permet de représenter plus précisément l'incidence de ces affections, a déclaré le Dr Tse. À l'avenir, le deep learning peut constituer une ressource utile pour faciliter le développement continu de modèles d'intelligence artificielle cliniquement utiles pour la radiographie thoracique. »

L’équipe de recherche a mis à la disposition des chercheurs les étiquettes d’évaluation des milliers d’images du NIH à l’adresse suivante: https://cloud.google.com/healthcare/docs/resources/public-datasets/nih-chest#. additional_labels. « La base de données du NIH est une ressource très importante, mais les étiquettes actuelles sont bruyantes, ce qui rend difficile l'interprétation des résultats publiés sur ces données, a déclaré Shetty. Nous espérons que la publication de nos étiquettes contribuera à la poursuite des recherches dans ce domaine. »

Bruno Benque avec RSNA


toshiba

Des modèles pertinents de deep learning pour la radiographie thoracique
03/12/2019 : Selon une étude publiée dans la revue Radiology, le deep learning peut détecter des résultats de radiographie thoracique cliniquement significatifs aussi efficacement que des radiologues expérimentés. Les chercheurs rapportent que leurs résultats pourraient constituer une ressource précieuse pour le développement futur de modèles d’intelligence artificielle pour la radiographie thoracique.

Assembler plusieurs modèles de machine learning pour affiner les résultats
27/11/2019 : La combinaison de plusieurs modèles de machine learning peut s’apparenter à une interprétation avec plusieurs avis de radiologues. Une étude publiée dans la Revue Radiology : Intelligence Artificielle décrit des résultats en ce sens. Un chalenge sur les hémorragies cérébrales explorées par scanner sera organisé au RSNA 2019.

Un réseau de neurones profonds pour améliorer le diagnostic de cancer du poumon
13/11/2019 : Selon des recherches publiées dans la revue Radiology, les radiologues assistés par un logiciel basé sur le deep learning étaient plus en mesure de détecter les cancers du poumon malins sur radiographies du thorax.

L'intelligence artificielle au révélateur de l'imagerie oncologique
12/11/2019 : Dans notre série d’articles dédiés au prochain symposium Scanner volumique, nous allons à la rencontre des orateurs qui animeront cet événement. Aujourd’hui, le Pr Pierre-Jean Valette évoque pour nous l’intelligence artificielle appliquée à l’imagerie oncologique, un thème qu’il abordera lors du symposium.

La recherche sur l'IA en imagerie avance avec le Data Challenge
25/10/2019 : Le Pr Nathalie Lassau, Professeur de Radiologie à l'Université Paris Sud et Co-Directrice du laboratoire d Imagerie IR4M (UPSUD/ CNRS) à l'Institut Gustave Roussy, est la responsable du Data Challenge dont la première édition a été organisée aux JFR 2018. Nous l'avons rencontrée pour une évocation des améliorations apportées, en 2019, à cette compétition.

Une plateforme dédiée pour choisir un moteur d'IA pertinent
03/10/2019 : Acteur historique de l'informatique de Santé, Softway Medical propose une offre d'intelligence artificielle tout à fait originale. À partir d'un catalogue de moteurs d'IA, le radiologue pourra choisir celui qui répondra précisément à ses besoins. Rendez-vous aux JFR 2019 pour découvrir cette nouvelle offre.

L'hémorragie cérébrale, thème du RSNA IA challenge 2019
17/09/2019 : La Radiological Society of North America (RSNA) vient de lancer son troisième défi annuel sur l'intelligence artificielle (IA): le défi RSNA de détection et de classification des hémorragies intracrâniennes.

La Data science en Santé se développe à l'Université
13/08/2019 : L'Intelligence artificielle en Santé fera l'objet de plusieurs cursus de formation dans les Universités françaises à la rentrée. C'est notamment le cas à l'Université Paris Descartes.

RSNA 2019 : 3 700 m2 dédiés à l'intelligence artificielle
09/08/2019 : Le RSNA 2019 AI Showcase proposera un plus grand espace dédié à l'intelligence artificielle. Des démonstrations et des salles de classe permettront aux fournisseurs de solutions et aux spécialistes de promouvoir les outils d'aide à la décision clinique ainsi que les bonnes pratiques de gestion des données.

De nouveaux outils d'aide à la décision en mammographie
18/06/2019 : L'aide à la décision en mammographie 2D et tomosynthèse 3D vient de s'enrichir, avec iCAD, de nouvelles applications annoncées lors du récent congrès de la SIFEM.


Le Pôle Imagerie Médicale de l’AP-HM surfe sur la dynamique créée par le projet Imagerie Avenir Marseille (IAM-APHM)
14/02/2020 : Alors qu’il arrive à son terme, le projet de renouvellement des modalités d’imagerie du Pôle Imagerie Médicale (PIM) de l’AP-HM suscite bien des espoirs. La dynamique créée par la forte implication des équipes médicales, paramédicales, techniques, biomédicales et administratives et le dialogue constructif qu’il a favorisé permettront d’améliorer la cohésion et la montée en compétences de tous les acteurs du pôle et des directions concernées.

Découvrez les images du coronavirus mises à jour dans Spectrum of imaging
13/02/2020 : « Radiology of Coronavirus : Spectrum of imaging », édité par la Revue Radiology, est une page web mise à jour continuellement. Elle fournit aux radiologues un panel de cas cliniques pour les assister dans leur décision.

Une évocation de l'imagerie médicale de demain au MDCT 2020
12/02/2020 : Le scanner spectral, la radiologie interventionnelle et l’intelligence artificielle ont constitué les thématiques majeures développées lors du 9ème Symposium Scanner volumique. Un événement qui a laissé entrevoir ce que pourrait être l’imagerie médicale diagnostique et thérapeutique à moyen terme.

Dépistage du cancer du poumon : la FNMR interpelle à nouveau les pouvoirs publics
11/02/2020 : Suite aux bons résultats de la récente étude NELSON, la FNMR vient réitérer, par communiqué, sa demande auprès des pouvoirs publics d’étudier la mise en place du dépistage du cancer du poumon par scanner low dose.

De nouvelles données pour identifier le coronavirus 2019-nCoV au scanner
11/02/2020 : Les signes détaillés du coronavirus 2019-nCoV viennent de faire l’objet d’une nouvelle étude parue dans la Revue Radiology. Des images en verre dépoli majoritairement périphériques et postérieures sont caractéristiques au scanner.

France Imageries Territoires, un vent de jeunesse dans la communauté
11/02/2020 : Le réseau de radiologues France Imageries Territoires compte désormais 270 praticiens. Les activités du groupe attirent de plus en plus de jeunes radiologues, les moins de 45 ans formant la majorité des adhérents.

L'étude NELSON promeut le dépistage du cancer du poumon par scanner
10/02/2020 : Le New England Journal of Medicine a publié, dernièrement les résultats de l’étude NELSON sur le dépistage du cancer du poumon chez les fumeurs. Il semble que le scanner low dose puisse significativement réduire le taux de mortalité de ces populations.

Deux nouvelles études en faveur de la tomothérapie pour le cancer du rectum
07/02/2020 : Deux nouvelles études internationales apportent une nouvelle fois la preuve des bénéfices apportés par la tomothérapie dans la prise en charge du cancer avancé du rectum. Combinée à la chimiothérapie et à la chirurgie, cette méthode apporte des résultats très satisfaisants.

Un catheter amégnétique pour les ablations cardiaques obtient le marquage CE
06/02/2020 : Le premier système d’ablation cardiaque en environnement soumis à un champ magnétique vient d’obtenir le marquage CE. Ceci est la promesse de nouvelles pratiques interventionnelles cardiaques guidées par l’IRM.

Les images pulmonaires caractéristiques du coronavirus au scanner
05/02/2020 : Dans un rapport spécial publié le 4 février 2020 dans la revue Radiology, des chercheurs décrivent les caractéristiques scanographiques qui facilitent la détection et le diagnostic précoces du coronavirus de Wuhan.


Les images pulmonaires caractéristiques du coronavirus au scanner
05/02/2020 : Dans un rapport spécial publié le 4 février 2020 dans la revue Radiology, des chercheurs décrivent les caractéristiques scanographiques qui facilitent la détection et le diagnostic précoces du coronavirus de Wuhan.

Une évocation de l'imagerie médicale de demain au MDCT 2020
12/02/2020 : Le scanner spectral, la radiologie interventionnelle et l’intelligence artificielle ont constitué les thématiques majeures développées lors du 9ème Symposium Scanner volumique. Un événement qui a laissé entrevoir ce que pourrait être l’imagerie médicale diagnostique et thérapeutique à moyen terme.

Un nouvel espoir de procréer grâce à l'embolisation des fibromes utérins
13/06/2017 : L’embolisation partielle des fibromes utérins pourrait devenir le traitement de première intensifn pour les femmes qui souhaitent procréer. C’est ce qu’a montré une étude portugaise publiée dans la revue Radiology.

L'étude NELSON promeut le dépistage du cancer du poumon par scanner
10/02/2020 : Le New England Journal of Medicine a publié, dernièrement les résultats de l’étude NELSON sur le dépistage du cancer du poumon chez les fumeurs. Il semble que le scanner low dose puisse significativement réduire le taux de mortalité de ces populations.

LE GADOLINIUM EST-IL DANGEREUX A LONG TERME ?
05/05/2015 : Une série d'études récentes montre que le Gadolinium s'accumule de façon résiduelle dans le cerveau. Les dangers de ces résidus sont sans doute liées à la structure moléculaire de l'agent chimique qui accompagne le Gadolinium dans le corps des patients. Et les habitudes des radiologues sont appelées à changer, selon le Pr Emmanuel Kanal.

Dépistage du cancer du poumon : la FNMR interpelle à nouveau les pouvoirs publics
11/02/2020 : Suite aux bons résultats de la récente étude NELSON, la FNMR vient réitérer, par communiqué, sa demande auprès des pouvoirs publics d’étudier la mise en place du dépistage du cancer du poumon par scanner low dose.

La mesure de calcification aortique par scanner comme outil de prévention des maladies cardio-vasculaires
02/10/2018 : Selon une nouvelle étude publiée dans la revue Radiology, les mesures des calcifications aortiques abdominales par tomodensitométrie (TDM) sont de puissants prédicteurs de crises cardiaques et autres événements cardiovasculaires indésirables. La TDM aurait un potentiel plus élevé, dans ce cadre, que le score de risque de Framingham.

Quelle stratégie adopter pour le renouvellement du parc de modalités d'imagerie ?
13/06/2018 : Les HCL et l'AP-HM ont chacun adopté une stratégie spécifique dans le cadre du renouvellement de leur parc d'imagerie. À Lyon, un seul fournisseur assurera la gestion de l'ensemble du parc, alors qu'à Marseille, une offre segmentée est proposée aux fournisseurs.

France Imageries Territoires, un vent de jeunesse dans la communauté
11/02/2020 : Le réseau de radiologues France Imageries Territoires compte désormais 270 praticiens. Les activités du groupe attirent de plus en plus de jeunes radiologues, les moins de 45 ans formant la majorité des adhérents.

De nouvelles données pour identifier le coronavirus 2019-nCoV au scanner
11/02/2020 : Les signes détaillés du coronavirus 2019-nCoV viennent de faire l’objet d’une nouvelle étude parue dans la Revue Radiology. Des images en verre dépoli majoritairement périphériques et postérieures sont caractéristiques au scanner.