Publicité

Assembler plusieurs modèles de machine learning pour affiner les résultats

27/11/2019
De Bruno Benque avec RSNA

La combinaison de plusieurs modèles de machine learning peut s’apparenter à une interprétation avec plusieurs avis de radiologues. Une étude publiée dans la Revue Radiology : Intelligence Artificielle décrit des résultats en ce sens. Un chalenge sur les hémorragies cérébrales explorées par scanner sera organisé au RSNA 2019.

L'apprentissage ensembliste est une méthode de machine learning dans laquelle différents modèles conçus pour accomplir la même tâche sont combinés en un seul modèle. 

Faire coopérer des modèles de machine learning différents

L'hétérogénéité de ces modèles est souvent importante et les ensembles ont tendance à donner de meilleurs résultats lorsque la corrélation entre les prédictions de chacun des modèles individuels est relativement faible. Ainsi, plus les différences sous-jacentes d'approche sont importantes, plus l’efficacité de l’ensemble est satisfaite.

Dans ce cadre, un concours dans lequel les candidats sont invités à soumettre leurs meilleurs modèles constitue un moment idéal pour rassembler des modèles performants utilisant différentes techniques. « Les compétitions offrent une occasion unique d’étudier les effets de la combinaison de prédictions issues de modèles hétérogènes », a déclaré Ian Pan, étudiant en médecine à la Warren Alpert Medical School de la Brown University, à Providence, en Irlande du Nord et auteur d’une étude dans la Revue Radiology : Artificial Intelligence.

Un challenge pour l’étude de l’âge osseux utilisant plus de 12 000 radiographies

Pour étudier les améliorations de performance possibles pour l'estimation automatique de l'âge osseux grâce à l’intégration de plusieurs modèles, Pan et ses collègues ont utilisé 48 modèles provenant du 2017 RSNA Pediatric Bone Age Machine Learning Challenge. Les participants ont reçu 12 611 radiographies pédiatriques des mains avec un âge osseux déterminé par un radiologue pédiatrique afin de développer des modèles pour la détermination de l'âge osseux.

Les résultats finaux ont été déterminés en utilisant un ensemble de 200 radiographies étiquetées avec la moyenne pondérée de 6 évaluations. Les chercheurs ont évalué la corrélation et la performance moyennes des modèles par paires de toutes les combinaisons de modèles possibles en utilisant l'écart absolu moyen (MAD). 

Des combinaisons que l’on peut assimiler à des interprétations utilisant plusieurs avis

Le MAD estimé d'un modèle unique était de 4,55 mois. Le meilleur ensemble était composé de quatre modèles avec un MAD de 3,79 mois. La corrélation moyenne par paire des modèles au sein de cet ensemble était de 0,47. En comparaison, le MAD le plus bas possible en combinant les modèles les mieux classés basés sur des scores individuels était de 3,93 mois avec huit modèles présentant une corrélation moyenne de 0,67 par modèle.

« Nos résultats attirent l'attention sur un concept qui a des implications pratiques substantielles, alors que les algorithmes de machine learning commencent à passer de la recherche à l'environnement clinique, poursuit Ian Pan. À savoir que les meilleurs résultats sont susceptibles d’être obtenus en combinant plusieurs modèles précis et divers plutôt qu’à partir de modèles uniques. » Ainsi, les praticiens souhaitant incorporer des algorithmes de machine learning à leur flux de travail gagneraient à utiliser différents modèles, ce que l’on peut assimiler à une interprétation radiologique utilisant plusieurs avis.

Un nouveau challenge sur les hémorragies cérébrales au RSNA 2019

Ian Pan a ajouté que les résultats soulignent également l'importance de compétitions ouvertes, telles que le 2017 RSNA Pediatric Bone Age Machine Learning Challenge, car elles expérimentent des cas d'utilisation normalisé et une méthode d'évaluation objective appliquée de la même manière à tous les modèles. « Les concours de machine learning en radiologie devraient promouvoir le développement de modèles hétérogènes dont les prévisions peuvent être combinées pour obtenir des performances optimales », conclut-il.

Pour le 2019 RSNA Intracranial Hemorrhage Detection and Classification Challenge, les chercheurs ont travaillé au développement d'algorithmes permettant d'identifier et de classifier les sous-types d'hémorragies sur scanners cérébraux. L'ensemble de données, qui comprend plus de 25 000 examens fournis par plusieurs instituts de recherche, est le premier ensemble de données multiplanaires utilisé dans le cadre d'un challenge d'intelligence artificielle au RSNA.

SUR LE MÊME THÈME

Imagerie Neurologique
Le programme pluridisciplinaire PREDICTOM pour la détection précoce de l'Alzheimer est lancé

Le programme pluridisciplinaire PREDICTOM pour la détection précoce de l'Alzheimer est lancé

La détection précoce de la maladie d’Alzheimer est l’un des sujets les plus traités par la communauté scientifique médicale. Le programme PREDICTOM, financé principalement par l’Union Européenne et qui vient d'être lancé, fait partie des travaux de recherche qu’il faudra suivre dans un futur proche.

16/09/2025 -

Imagerie Neurologique
L'IRM prouve l'efficacité de l'acupuncture pour traiter le syndrome post-traumatique crânien
Abonné(e)

L'IRM prouve l'efficacité de l'acupuncture pour traiter le syndrome post-traumatique crânien

L’acupuncture représente une alternative non médicamenteuse pour traiter le syndrome post-commotionnel chronique. Une étude publiée dans la Revue Radiology prouve son efficacité en utilisant l’IRM par tenseur de diffusion pour évaluer les évolutions des lésions axonales notamment dans ce contexte.

20/08/2025 -

Imagerie Neurologique
Les inscriptions au 2025 RSNA Intracranial Aneurysm Detection Challenge sont ouvertes !

Les inscriptions au 2025 RSNA Intracranial Aneurysm Detection Challenge sont ouvertes !

Comme elle le fait depuis quelques années à l’approche de son congrès annuel, la Radiological Society of North America (RSNA) lance un nouveau challenge faisant intervenir l’IA. Il s’agit du RSNA Intracranial Aneurysm Detection AI Challenge 2025.

13/08/2025 -

Imagerie Neurologique
Un riche catalogue de biomarqueurs dédiés au TEP pour les maladies neurologiques
Abonné(e)

Un riche catalogue de biomarqueurs dédiés au TEP pour les maladies neurologiques

L’identification des pathologies cérébrales nécessite désormais une approche biologique en plus de la clinique. Dans ce cadre, des marqueurs spécifiques au TEP permettent la découverte de certaines maladies neurologiques avant toute apparition clinique. Une revue de la littérature publiée dans le Jo...

15/07/2025 -

Imagerie Neurologique
Une fondation dédiée au développement de l'échothérapie par ultrasons focalisés

Une fondation dédiée au développement de l'échothérapie par ultrasons focalisés

Les procédure d’échothérapie par ultrasons focalisés (Focused Ultrasound – FUS) se diversifient, bien que cette activité thérapeutique soit encore à la marge. Mais la Focused Ultrasound Foundation se place parmi les institutions dédiées à son développement.

09/07/2025 -

Imagerie Neurologique
La stimulation électrique transcrânienne pour améliorer les performances cognitives des patients Alzheimer
Abonné(e)

La stimulation électrique transcrânienne pour améliorer les performances cognitives des patients Alzheimer

Les implications fonctionnelles de la stimulation électrique pour réduire les effets de la maladie d’Alzheimer sont insuffisamment explorées dans la littérature. Une étude publiée dans la Revue Radiology identifie, par IRM fonctionnelle, les apports de la stimulation transcrânienne sur la connectivi...

25/06/2025 -

Imagerie Neurologique
Optimiser les images de stents intracrâniens par TDM à comptage photonique
Abonné(e)

Optimiser les images de stents intracrâniens par TDM à comptage photonique

Alors que la TDM à comptage photonique est très appréciée, elle est peu présente dans la littérature pour l’exploration des stents intracrâniens. Une étude allemande publiée dans la Revue European Radiology se propose de trouver le meilleur post-traitement de l’angioTDM-CP pour optimiser les images...

11/06/2025 -

LETTRE D'INFORMATION

Ne manquez aucune actualité en imagerie médicale et radiologie !

Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.