Vous êtes dans : Accueil > Actualités > Intelligence Artificielle, Machine Learning > Un réseau de neurones profonds pour améliorer le diagnostic de cancer du poumon

Un réseau de neurones profonds pour améliorer le diagnostic de cancer du poumon

MERCREDI 13 NOVEMBRE 2019 Soyez le premier à réagirSoyez le premier à réagir

Selon des recherches publiées dans la revue Radiology, les radiologues assistés par un logiciel basé sur le deep learning étaient plus en mesure de détecter les cancers du poumon malins sur radiographies du thorax.

RSNA

L’intelligence artificielle appliquée à la recherche de cancer du poumon a fait l’objet d’une étude publiée dans la Revue Radiology et conduite par le Dr Byoung Wook Choi, professeur à l'Université de médecine de Yonsei, et radiologue cardiothoracique. dans le département de radiologie de l’Université Yonsei à Séoul (Corée).

Un réseau de neurones profonds pour aider le radiologue

"La sensibilité moyenne des radiologues a été améliorée de 5,2% lorsqu'ils ont revu les radiographies avec le logiciel de deep learning, précise-t-il. Dans le même temps, le nombre de faux positifs par image a été réduit." Selon le Dr Choi, les caractéristiques des lésions pulmonaires, notamment leur taille, leur densité et leur localisation, compliquaient la détection des nodules pulmonaires sur les radiographies thoraciques. Cependant, les méthodes d'apprentissage automatique, dont la mise en œuvre de réseaux de neurones à convolution profonde (DCNN), ont permis d'améliorer leur détection. Un DCNN, dont l’architecture rappelle la structure du cerveau, utilise plusieurs couches et motifs cachés pour classifier les images.

Dans cette étude rétrospective, les radiologues ont sélectionné au hasard 800 radiographies du thorax au total, provenant de quatre centres participants, parmi lesquels 200 examens normaux et 600 avec au moins un nodule pulmonaire malin confirmé par tomodensitométrie ou par examen anatomo-pathologique. Il y avait 704 nodules malins confirmés dans les radiographies de cancer du poumon (78,6% des cancers primitifs du poumon et 21,4% des métastases). La majorité (56,1%) des nodules mesuraient entre 1 cm et 2 cm, tandis que 43,9% mesuraient entre 2 cm et 3 cm.

Une sensibilité nettement améliorée

Un deuxième groupe de radiologues, comprenant trois de chaque établissement, a interprété les radiographies thoraciques sélectionnées avec et sans nodules cancéreux. Les lecteurs ont ensuite relu les mêmes examens à l'aide du logiciel DCNN, formé à la détection des nodules pulmonaires. La sensibilité moyenne, ou la capacité de détecter un cancer existant, s'est nettement améliorée, passant de 65,1% pour les radiologues en lecture seule à 70,3% avec l'aide du logiciel DCNN. Le nombre de faux positifs a également baissé avec l'aide du logiciel.

"Les logiciels de détection assistée par ordinateur pour détecter les nodules pulmonaires n'ont pas été largement acceptés et utilisés en raison du nombre élevé de taux de faux positifs, même s'ils offrent une sensibilité relativement élevée, conclut le Dr Choi. Le logiciel DCNN pourrait être une solution pour réduire le nombre de faux positifs."

Bruno Benque avec RSNA


toshiba

Des modèles pertinents de deep learning pour la radiographie thoracique
03/12/2019 : Selon une étude publiée dans la revue Radiology, le deep learning peut détecter des résultats de radiographie thoracique cliniquement significatifs aussi efficacement que des radiologues expérimentés. Les chercheurs rapportent que leurs résultats pourraient constituer une ressource précieuse pour le développement futur de modèles d’intelligence artificielle pour la radiographie thoracique.

Assembler plusieurs modèles de machine learning pour affiner les résultats
27/11/2019 : La combinaison de plusieurs modèles de machine learning peut s’apparenter à une interprétation avec plusieurs avis de radiologues. Une étude publiée dans la Revue Radiology : Intelligence Artificielle décrit des résultats en ce sens. Un chalenge sur les hémorragies cérébrales explorées par scanner sera organisé au RSNA 2019.

Un réseau de neurones profonds pour améliorer le diagnostic de cancer du poumon
13/11/2019 : Selon des recherches publiées dans la revue Radiology, les radiologues assistés par un logiciel basé sur le deep learning étaient plus en mesure de détecter les cancers du poumon malins sur radiographies du thorax.

L'intelligence artificielle au révélateur de l'imagerie oncologique
12/11/2019 : Dans notre série d’articles dédiés au prochain symposium Scanner volumique, nous allons à la rencontre des orateurs qui animeront cet événement. Aujourd’hui, le Pr Pierre-Jean Valette évoque pour nous l’intelligence artificielle appliquée à l’imagerie oncologique, un thème qu’il abordera lors du symposium.

La recherche sur l'IA en imagerie avance avec le Data Challenge
25/10/2019 : Le Pr Nathalie Lassau, Professeur de Radiologie à l'Université Paris Sud et Co-Directrice du laboratoire d Imagerie IR4M (UPSUD/ CNRS) à l'Institut Gustave Roussy, est la responsable du Data Challenge dont la première édition a été organisée aux JFR 2018. Nous l'avons rencontrée pour une évocation des améliorations apportées, en 2019, à cette compétition.

Une plateforme dédiée pour choisir un moteur d'IA pertinent
03/10/2019 : Acteur historique de l'informatique de Santé, Softway Medical propose une offre d'intelligence artificielle tout à fait originale. À partir d'un catalogue de moteurs d'IA, le radiologue pourra choisir celui qui répondra précisément à ses besoins. Rendez-vous aux JFR 2019 pour découvrir cette nouvelle offre.

L'hémorragie cérébrale, thème du RSNA IA challenge 2019
17/09/2019 : La Radiological Society of North America (RSNA) vient de lancer son troisième défi annuel sur l'intelligence artificielle (IA): le défi RSNA de détection et de classification des hémorragies intracrâniennes.

La Data science en Santé se développe à l'Université
13/08/2019 : L'Intelligence artificielle en Santé fera l'objet de plusieurs cursus de formation dans les Universités françaises à la rentrée. C'est notamment le cas à l'Université Paris Descartes.

RSNA 2019 : 3 700 m2 dédiés à l'intelligence artificielle
09/08/2019 : Le RSNA 2019 AI Showcase proposera un plus grand espace dédié à l'intelligence artificielle. Des démonstrations et des salles de classe permettront aux fournisseurs de solutions et aux spécialistes de promouvoir les outils d'aide à la décision clinique ainsi que les bonnes pratiques de gestion des données.

De nouveaux outils d'aide à la décision en mammographie
18/06/2019 : L'aide à la décision en mammographie 2D et tomosynthèse 3D vient de s'enrichir, avec iCAD, de nouvelles applications annoncées lors du récent congrès de la SIFEM.


Le Pôle Imagerie Médicale de l’AP-HM surfe sur la dynamique créée par le projet Imagerie Avenir Marseille (IAM-APHM)
14/02/2020 : Alors qu’il arrive à son terme, le projet de renouvellement des modalités d’imagerie du Pôle Imagerie Médicale (PIM) de l’AP-HM suscite bien des espoirs. La dynamique créée par la forte implication des équipes médicales, paramédicales, techniques, biomédicales et administratives et le dialogue constructif qu’il a favorisé permettront d’améliorer la cohésion et la montée en compétences de tous les acteurs du pôle et des directions concernées.

Découvrez les images du coronavirus mises à jour dans Spectrum of imaging
13/02/2020 : « Radiology of Coronavirus : Spectrum of imaging », édité par la Revue Radiology, est une page web mise à jour continuellement. Elle fournit aux radiologues un panel de cas cliniques pour les assister dans leur décision.

Une évocation de l'imagerie médicale de demain au MDCT 2020
12/02/2020 : Le scanner spectral, la radiologie interventionnelle et l’intelligence artificielle ont constitué les thématiques majeures développées lors du 9ème Symposium Scanner volumique. Un événement qui a laissé entrevoir ce que pourrait être l’imagerie médicale diagnostique et thérapeutique à moyen terme.

Dépistage du cancer du poumon : la FNMR interpelle à nouveau les pouvoirs publics
11/02/2020 : Suite aux bons résultats de la récente étude NELSON, la FNMR vient réitérer, par communiqué, sa demande auprès des pouvoirs publics d’étudier la mise en place du dépistage du cancer du poumon par scanner low dose.

De nouvelles données pour identifier le coronavirus 2019-nCoV au scanner
11/02/2020 : Les signes détaillés du coronavirus 2019-nCoV viennent de faire l’objet d’une nouvelle étude parue dans la Revue Radiology. Des images en verre dépoli majoritairement périphériques et postérieures sont caractéristiques au scanner.

France Imageries Territoires, un vent de jeunesse dans la communauté
11/02/2020 : Le réseau de radiologues France Imageries Territoires compte désormais 270 praticiens. Les activités du groupe attirent de plus en plus de jeunes radiologues, les moins de 45 ans formant la majorité des adhérents.

L'étude NELSON promeut le dépistage du cancer du poumon par scanner
10/02/2020 : Le New England Journal of Medicine a publié, dernièrement les résultats de l’étude NELSON sur le dépistage du cancer du poumon chez les fumeurs. Il semble que le scanner low dose puisse significativement réduire le taux de mortalité de ces populations.

Deux nouvelles études en faveur de la tomothérapie pour le cancer du rectum
07/02/2020 : Deux nouvelles études internationales apportent une nouvelle fois la preuve des bénéfices apportés par la tomothérapie dans la prise en charge du cancer avancé du rectum. Combinée à la chimiothérapie et à la chirurgie, cette méthode apporte des résultats très satisfaisants.

Un catheter amégnétique pour les ablations cardiaques obtient le marquage CE
06/02/2020 : Le premier système d’ablation cardiaque en environnement soumis à un champ magnétique vient d’obtenir le marquage CE. Ceci est la promesse de nouvelles pratiques interventionnelles cardiaques guidées par l’IRM.

Les images pulmonaires caractéristiques du coronavirus au scanner
05/02/2020 : Dans un rapport spécial publié le 4 février 2020 dans la revue Radiology, des chercheurs décrivent les caractéristiques scanographiques qui facilitent la détection et le diagnostic précoces du coronavirus de Wuhan.


Les images pulmonaires caractéristiques du coronavirus au scanner
05/02/2020 : Dans un rapport spécial publié le 4 février 2020 dans la revue Radiology, des chercheurs décrivent les caractéristiques scanographiques qui facilitent la détection et le diagnostic précoces du coronavirus de Wuhan.

Une évocation de l'imagerie médicale de demain au MDCT 2020
12/02/2020 : Le scanner spectral, la radiologie interventionnelle et l’intelligence artificielle ont constitué les thématiques majeures développées lors du 9ème Symposium Scanner volumique. Un événement qui a laissé entrevoir ce que pourrait être l’imagerie médicale diagnostique et thérapeutique à moyen terme.

LE GADOLINIUM EST-IL DANGEREUX A LONG TERME ?
05/05/2015 : Une série d'études récentes montre que le Gadolinium s'accumule de façon résiduelle dans le cerveau. Les dangers de ces résidus sont sans doute liées à la structure moléculaire de l'agent chimique qui accompagne le Gadolinium dans le corps des patients. Et les habitudes des radiologues sont appelées à changer, selon le Pr Emmanuel Kanal.

Réglementation concernant les appareils mobiles des cabinets dentaires
17/05/2016 : Les appareils mobiles ou portables générant des rayons X au sein des cabinets dentaires font désormais l’objet d’une surveillance identique à un poste fixe. C’est ce qu’a rappelé l’ASN dans une note datée du 2 mai 2016.

L'étude NELSON promeut le dépistage du cancer du poumon par scanner
10/02/2020 : Le New England Journal of Medicine a publié, dernièrement les résultats de l’étude NELSON sur le dépistage du cancer du poumon chez les fumeurs. Il semble que le scanner low dose puisse significativement réduire le taux de mortalité de ces populations.

Un nouvel espoir de procréer grâce à l'embolisation des fibromes utérins
13/06/2017 : L’embolisation partielle des fibromes utérins pourrait devenir le traitement de première intensifn pour les femmes qui souhaitent procréer. C’est ce qu’a montré une étude portugaise publiée dans la revue Radiology.

Optimiser la cotation des actes grâce à un nouveau site web gratuit
03/09/2019 : Le catalogue CCAM est souvent mal employé par les radiologues, ce qui peut engendrer des erreurs de cotations. C'est pout leur venir en aide que le site web gratuit ccam-radiologie.fr a été conçu, afin d'optimiser la facturation de l'activité radiologique.

Dépistage du cancer du poumon : la FNMR interpelle à nouveau les pouvoirs publics
11/02/2020 : Suite aux bons résultats de la récente étude NELSON, la FNMR vient réitérer, par communiqué, sa demande auprès des pouvoirs publics d’étudier la mise en place du dépistage du cancer du poumon par scanner low dose.

De nouvelles données pour identifier le coronavirus 2019-nCoV au scanner
11/02/2020 : Les signes détaillés du coronavirus 2019-nCoV viennent de faire l’objet d’une nouvelle étude parue dans la Revue Radiology. Des images en verre dépoli majoritairement périphériques et postérieures sont caractéristiques au scanner.

La mesure de calcification aortique par scanner comme outil de prévention des maladies cardio-vasculaires
02/10/2018 : Selon une nouvelle étude publiée dans la revue Radiology, les mesures des calcifications aortiques abdominales par tomodensitométrie (TDM) sont de puissants prédicteurs de crises cardiaques et autres événements cardiovasculaires indésirables. La TDM aurait un potentiel plus élevé, dans ce cadre, que le score de risque de Framingham.