Vous êtes dans : Accueil > Actualités > Intelligence Artificielle, Machine Learning > Le deep learning pour gagner le combat contre la tuberculose

Le deep learning pour gagner le combat contre la tuberculose

LUNDI 03 DéCEMBRE 2018 Soyez le premier à réagirSoyez le premier à réagir

Le combat contre la tuberculose pourrait être gagné en utilisant l'IA pour le diagnostic sur les radiographies pulmonaires. Ce thème a été développé dans un article de la revue Radiology, primé au congrès de la RSNA 2018.

 

La Radiological Society of North America (RSNA) a décerné, le 26 novembre 2018, son septième prix d'excellence scientifique Alexander R. Margulis au Dr Paras Lakhani, du Thomas Jefferson University Hospital (TJUH) de Philadelphie, pour l'article intitulé "Deep Learning pour la radiographie thoracique: classification automatisée de la tuberculose pulmonaire à l’aide de réseaux de neurones convolutifs", publiée en ligne en avril 2017.

L'intelligence artificielle pour gagner le combat contre la tuberculose

Baptisé en l'honneur du Dr Alexander R. Margulis, chercheur distingué et visionnaire dans le domaine de la radiologie, ce prix annuel récompense le meilleur article scientifique original publié dans la revue Radiology, par le comité de lecture de la RSNA. Si l’imagerie joue un rôle central dans le diagnostic et la prise en charge de la tuberculose, l’accès à la radiologie est souvent limité dans les pays en développement où la tuberculose est la plus répandue. Espérant combler cette lacune, le Dr Lakhani et son collègue le Dr Baskaran Sundaram, également du TJUH, ont étudié l'efficacité d'une méthode automatisée de détection de la tuberculose sur des radiographies thoraciques.

Les chercheurs ont notamment utilisé le Deep learning, qui utilise des réseaux de neurones à convolution profonde (DCNN), pour identifier la tuberculose sur les radiographies thoraciques. Les résultats de la recherche étaient prometteurs. "Nous avons déterminé que le deep learning DCNN peut classer la tuberculose à partir de la radiographie pulmonaire, a déclaré le Dr Lakhani. Cette méthode signifie que la radiographie peut faciliter les efforts de dépistage et d'évaluation dans les zones prévalentes pour la tuberculose où l'accès aux radiologistes est limité."

Un problème de Santé publique dans les pays en développement

Selon le Pr David A. Bluemke, rédacteur en chef de la revue Radiology, ce type de recherche innovante représente l'avenir de la radiologie. "Les auteurs ont évalué un problème mondial de santé publique - en particulier dans les zones où il y a peu de radiologues, a-t-il déclaré. Ce qui est important ici est que les Drs. Lakhani et Sundaram ont validé leurs résultats en étudiant des radiographies thoraciques aux États-Unis, en Biélorussie et en Chine. Ce type d’étude validée avec pertinence va changer la pratique de la radiologie."

Pour le Dr Lakhani, le potentiel d'amélioration de la détection de la tuberculose, l'une des 10 principales causes de décès dans le monde, constitue un facteur de motivation important pour la recherche. Et d'après l'Organisation mondiale de la santé (OMS), environ 10,4 millions de personnes ont contracté la tuberculose en 2016, entraînant la mort de 1,8 million de personnes. "Une solution automatisée pourrait réduire significativement le développement de cette maladie, en particulier dans les pays en développement comme l'Afrique subsaharienne, poursuit-il. Une grande priorité de l'OMS est de mettre fin à la tuberculose."

Un modèle de deep learning précis à 96%

Pour cette étude, les Drs. Lakhani et Sundaram ont reçu 1 007 radiographies de patients atteints, ou non, de tuberculose, constituées de plusieurs jeux de données de radiographie thoracique provenant d'instituts nationaux de la santé, du Belarus Tuberculosis Portal et de TJUH. Ces données ont été divisées en groupes entrainement (68,0%), validation (17,1%) et test (14,9%). Les cas ont été utilisés pour entrainer deux modèles DCNN différents - AlexNet et GoogLeNet - tirés des examens positifs et négatifs à la tuberculose. La précision des modèles a été testée sur 150 cas exclus des jeux de données d'entrainement et de validation. Le modèle d'IA le plus performant combinait AlexNet et GoogLeNet, avec une précision nette de 96%.

Les deux modèles DCNN étaient incohérents dans 13 des 150 cas tests. Pour ces cas, les chercheurs ont évalué une procédure où un radiologue expert était capable d'interpréter les images, en diagnostiquant avec précision 100% des cas. Ce flux de travail, incorporant un humain dans la boucle, avait une plus grande précision nette de près de 99%. Selon le Dr Lakhani, les DCNN n'étaient pas entrainés pour distinguer les ressemblances potentielles de la tuberculose pulmonaire, tels que le cancer du poumon, la pneumonie bactérienne ou les maladies tropicales.

Élargir le champ d'étude pour donner de la robustesse à son modèle

"Le but de ces algorithmes est de différencier les radiographies pulmonaires normales des anomalies thoraciques dans le champ d'évaluation de la tuberculose, remarque-t-il. Les cas signalés comme anormaux présentant des caractéristiques de tuberculose pulmonaire devraient être suivis d'une confirmation bactériologique, comme le suggèrent les processus de dépistage présentés par l'OMS. L'objectif de ces derniers est la réduction des coûts, la valorisation de la radiographie numérique ayant considérablement diminué au cours de la dernière décennie."

Le Dr Lakhani, qui a terminé son cursus en médecine nucléaire et en PETScan, est radiologue depuis 2011 et se spécialise principalement en radiologie cardiaque au TJUH. Il a ajouté que le Prix Margulis, en plus d'être un immense honneur, donne une impulsion à ses projets d'amélioration des modèles avec davantage d'expérience et d'autres méthodes de deep learning. Bien qu'il s'agisse d'une étude rétrospective basée sur des ensembles de données disponibles au moment de l'étude, il espère élargir le champ en étudiant l'utilisation de DCNN dans une pratique clinique d'évaluation de la tuberculose.

"Avec le deep learning, plus vous disposez de données, mieux vous vous portez, conclut-il. Il existe de nombreuses données à l’international permettant de développer des algorithmes plus robustes et l’avenir est prometteur pour ce type de recherche."

Bruno Benque avec RSNA


toshiba

Les trois lauréats du Myrian Studio Challenge sont connus
11/12/2018 : Intrasense a récompensé trois projets innovants en imagerie médicale en décernant les trois Prix "Myrian® Studio Challenge 2018" au dernier RSNA.  

Le deep learning pour gagner le combat contre la tuberculose
03/12/2018 : Le combat contre la tuberculose pourrait être gagné en utilisant l'IA pour le diagnostic sur les radiographies pulmonaires. Ce thème a été développé dans un article de la revue Radiology, primé au congrès de la RSNA 2018.  

La RSNA récompense des algorithmes d'identification de la pneumonie par radiographie pulmonaire
27/11/2018 : Le Pneumonia Detection Challenge a récompensé dix équipes ayant élaboré chacune un algorithme de Machine Learning pour identifier une pneumonie sur des radiographies pulmonaires. Ils ont été présentés le 26 novembre lors du congrès 2018 de la RSNA.

Diagnostic automatique des radiographies pulmonaires: dans les années 60, déjà...
21/11/2018 : Les recherches sur les usages de l'Intelligence Artificielle appliqués à la radiologie se multiplient désormais. L'éditorial du Journal Radiology revient sur ces application et rappelle que, dans les années 60, un radiologue précurseur avait initié un système d'apprentissage des images pathologiques sur les radiographies du poumon.

Un projet d'Intelligence Artificielle surdimensionné au Nord de l'Angleterre
13/11/2018 : Sectra met à disposition du consortium Northern Pathology Co-operative (NPP) au Royaume-Uni, sa plateforme d'Intelligence Artificielle pour un projet de mise en commun d'images radiologiques oncologiques pesant quelques 1,2 pétaoctets par an.  

Détecter précocement la maladie d'Alzheimer grâce au Deep Learning des données de PET-FDG
06/11/2018 : Le Deep Learning basé sur les données du PET-FDG améliorerait la capacité de l'imagerie cérébrale à prédire précocement la maladie d'Alzheimer. C'est ce que conclut une étude publiée dans la revue Radiology qui identifie les changements métaboliques avec une sensibilité significative.  

Brain(s), la plateforme de recherche & développement japonaise d'Intelligence Artificielle en Santé
02/11/2018 : Fujifilm est désormais lancé dans le développement de technologies d'Intelligence Artificielle. C'est ainsi qu'ellle vient d'annoncer la création de "Brain(s)", son Fujifilm Creative AI Center, plateforme de recherche et développement situé en plein cœur de Tokyo.

Naissance de DRIM France IA, l'écosystème créé par le Conseil de la Radiologie française
24/10/2018 : L'écosystème français d'Intelligence Artificielle dédié à l'imagerie médicale est créé et s'appelle "DRIM France IA". Le G4 a annoncé sa mise en œuvre lors des JFR 2018.  

Canon Medical Systems intègre l'IA au cœur de ses solutions d'imagerie
10/10/2018 : Dès la fin 2018 Canon Medical Systems implantera son premier Scanner intégrant de l’intelligence artificielle (IA) au CHU de Dijon. Une solution de Deep Learning Reconstruction (DLR) embarquée permettra en effet d’augmenter la qualité et la précision des images et d’abaisser le niveau d’irradiation du patient.

Imagerie et IA: un duo à réguler finement au bénéfice du patient
09/10/2018 : Nesrine Benyahia, Présidente de DrData, et Stéphane Boyer, Directeur Général d'Arterys, nous éclairent sur les véritables enjeux de l’intelligence artificielle en imagerie médicale par des regards croisés sur les plans du juridique, des politiques publiques et des applications pratiques.


Perfectionnez-vous en IRM pelvienne en présentiel et e-learning
13/12/2018 : La formation FORCOMED de perfectionnement à l'IRM pelvienne est reconduite en 2019. Deux sessions en présentiel sont programmées, ainsi qu'un module d'e-learning.

Le Dr Philippe Cart nouveau Président du Syndicat des Radiologues Hospitaliers
13/12/2018 : Le Dr Philippe Cart (CH Charleville-Mézières) a été élu, le 7 décembre 2018, Président du Syndicat des Radiologues Hospitaliers (SRH).

Des gains significatifs dans la planification et la durée des traitements pour le cyberknife
12/12/2018 : Avec son système de planification de traitement Accuray Precision®associé à l’optimisateur VOLOTM pour le Cyberknife, Accuray réduit significativement les durées de planification et les temps de traitement.

Le JT du RSNA du 7 décembre 2018
12/12/2018 : Pour clore notre série de comptes rendus du RSNA 2018, en partenariat avec les Entretiens Médicaux d'Enghein, le JT du 7 décembre fait la synthèse de l'édition 2018 et présente des outils d'impression 3D.

Les trois lauréats du Myrian Studio Challenge sont connus
11/12/2018 : Intrasense a récompensé trois projets innovants en imagerie médicale en décernant les trois Prix "Myrian® Studio Challenge 2018" au dernier RSNA.  

Une meilleure détection du cancer du sein depuis la mammographie numérique
11/12/2018 : Le passage d'une mammographie sur film à une mammographie numérique a augmenté la détection du cancer du sein de 14% au Royaume-Uni sans augmenter le taux de rappel, selon une nouvelle étude majeure parue dans la revue Radiology.

Le JT du RSNA du 6 novembre 2018
10/12/2018 : Dans notre série de comptes rendus du RSNA 2018, en partenariat avec les Entretiens Médicaux d'Enghein, le JT du 6 décembre parle de gadolinium, de cryo et thermo-ablation, et de la rentabilité relative des modalités présentées dans ce congrès.

Un site d'information pour tranquilliser les enfants avant un examen
07/12/2018 : RadiologyInfo.org a lancé RadInfo 4 Kids, une nouvelle section du site Web grand public contenant des vidéos, des histoires, des jeux et des activités pour aider les enfants et leurs parents à se préparer aux examens d'imagerie médicale.

Le JT du RSNA du 5 décembre 2018
06/12/2018 : Dans notre série de comptes rendus du RSNA 2018, en partenariat avec les Entretiens Médicaux d'Enghein, le JT du 5 décembre évoque la radiomique, le TEP-IRM et les grandes tendances observées au RSNA 2018 notamment.

Canon Medical présente ses nouveautés au RSNA 2018
06/12/2018 : Canon Medical a une nouvelle fois, lors du RSNA 2018, fait la preuve de sa polyvalence et de son avance technologique avec ses modalités d'explorations avancées.


Radioprotection: ce qui devrait changer le 1er juillet 2018
30/03/2018 : L'Ordonnance instituant de nouvelles règles en matière de prévention du risque ionisant devrait entrer en vigueur le 1er juillet 2018. Il n'y aura pas, d'après les informations que nous avons recueillies, de révolution. La gestion des professionnels multi-établissements devrait être revue, la fiche d'exposition devrait disparaître et les PCR externes sont appelés à faire place à des OCR certifiés ISO.

L'Ingenia Ambition: une innovation de rupture en IRM
20/11/2018 : L'IRM Ingenia Ambition de Philips Healthcare n'a besoin que de 7 litres d'hélium pour fonctionner. Marceau Eck, Responsable marketing IRM, que nous avons rencontré aux JFR 2018, revient sur les avantages d'une telle évolution.

LE GADOLINIUM EST-IL DANGEREUX A LONG TERME ?
05/05/2015 : Une série d'études récentes montre que le Gadolinium s'accumule de façon résiduelle dans le cerveau. Les dangers de ces résidus sont sans doute liées à la structure moléculaire de l'agent chimique qui accompagne le Gadolinium dans le corps des patients. Et les habitudes des radiologues sont appelées à changer, selon le Pr Emmanuel Kanal.

Les trois lauréats du Myrian Studio Challenge sont connus
11/12/2018 : Intrasense a récompensé trois projets innovants en imagerie médicale en décernant les trois Prix "Myrian® Studio Challenge 2018" au dernier RSNA.  

Perfectionnez-vous en IRM pelvienne en présentiel et e-learning
13/12/2018 : La formation FORCOMED de perfectionnement à l'IRM pelvienne est reconduite en 2019. Deux sessions en présentiel sont programmées, ainsi qu'un module d'e-learning.

Une meilleure détection du cancer du sein depuis la mammographie numérique
11/12/2018 : Le passage d'une mammographie sur film à une mammographie numérique a augmenté la détection du cancer du sein de 14% au Royaume-Uni sans augmenter le taux de rappel, selon une nouvelle étude majeure parue dans la revue Radiology.

Un site d'information pour tranquilliser les enfants avant un examen
07/12/2018 : RadiologyInfo.org a lancé RadInfo 4 Kids, une nouvelle section du site Web grand public contenant des vidéos, des histoires, des jeux et des activités pour aider les enfants et leurs parents à se préparer aux examens d'imagerie médicale.

Détecter précocement la maladie d'Alzheimer grâce au Deep Learning des données de PET-FDG
06/11/2018 : Le Deep Learning basé sur les données du PET-FDG améliorerait la capacité de l'imagerie cérébrale à prédire précocement la maladie d'Alzheimer. C'est ce que conclut une étude publiée dans la revue Radiology qui identifie les changements métaboliques avec une sensibilité significative.  

Un site dédié à la gestion des obligations réglementaires des centres d'imagerie médicale
28/03/2017 : Afin que les professionnels de santé des centres d’imagerie médicale puissent se concentrer sur leur coeur de métier, SOCOTEC a mis en ligne un site internet dédié à la prise en compte de leurs obligations réglementaires.

Canon Medical présente ses nouveautés au RSNA 2018
06/12/2018 : Canon Medical a une nouvelle fois, lors du RSNA 2018, fait la preuve de sa polyvalence et de son avance technologique avec ses modalités d'explorations avancées.