Vous êtes dans : Accueil > Actualités > Intelligence Artificielle, Machine Learning > La RSNA récompense des algorithmes d'identification de la pneumonie par radiographie pulmonaire

La RSNA récompense des algorithmes d'identification de la pneumonie par radiographie pulmonaire

MARDI 27 NOVEMBRE 2018 Soyez le premier à réagirSoyez le premier à réagir

Le Pneumonia Detection Challenge a récompensé dix équipes ayant élaboré chacune un algorithme de Machine Learning pour identifier une pneumonie sur des radiographies pulmonaires. Ils ont été présentés le 26 novembre lors du congrès 2018 de la RSNA.

RSNA 2018

Nous avons relayé récemment, dans nos colonnes, l'intérêt des radiologues à pouvoir disposer d'outils d'intelligence artificielle pour l'interpétation automatique des radiographies pulmonaires. La Radiological Society of North America (RSNA) a annoncé, le 26 novembre 2018, les résultats officiels de son deuxième défi annuel de Machine Learning qui était consacré à ce champ d'étude.

1 400 équipe au départ du défi RSNA Pneumonia Detection Challenge

Le RSNA Pneumonia Detection Challenge a demandé aux équipes de développer des algorithmes pour identifier et localiser la pneumonie dans les radiographies thoraciques. Plus de 1 400 équipes ont pris part au défi et 346 ont soumis les résultats au cours de la phase d’évaluation de la compétition. Le défi a fait appel à un ensemble de données de radiographies pulmonaires disponibles, rendues publiques, auprès du National Institutes of Health. Le comité directeur de RSNA Machine Learning a collaboré avec des volontaires de la Society of Thoracic Radiology, dirigés par le Dr Carol Wu pour annoter le jeu de données et identifier les cas de pneumonie probables. L'ensemble de données annoté a fourni la "vérité de terrain" aux participants pour élaborer leurs algorithmes et évaluer leurs soumissions lors de la phase finale du défi. L'annotation des jeux de données a été organisée et validée à l'aide des outils fournis par MD.ai sous la direction du Dr George Shih et du Dr Anouk Stein.

Promouvoir le Machine Learning pour améliorer la précision et l'efficacité des diagnostics

"Un défi de machine learning réussi doit commencer par un ensemble de données suffisamment précis et suffisamment volumineux pour fournir la vérité de terrain, a déclaré le Dr Safwan Halabi, directeur médical des Radiology Informatics au Stanford Children’s Health et président du RSNA Machine Learning Data Standards Committee. Les développeurs construisent leurs modèles en les formant à l'ensemble de données et les organisateurs de défi utilisent une partie de l'ensemble de données pour mesurer leurs performances. L'un des principaux objectifs du concours est de promouvoir l'utilisation du machine learning en tant qu'outil d'amélioration de la précision et de l'efficacité du diagnostic, l'objectif ultime étant d'améliorer les soins aux patients. ”

30 000 $ à partager entre les dix lauréats

Le défi a été lancé sur une plate-forme fournie par Kaggle, Inc. La plate-forme Kaggle permet d'accéder à des jeux de données, à un forum de discussion pour les participants, au référentiel des résultats soumis et à un classement qui évolue tout au long du défi. Kaggle a également fourni 30 000 $ en prix à partager entre les gagnants. Les équipes gagnantes du RSNA Pneumonia Detection Challenge sont: ·Ian Pan & Alexandre Cadrin, Dmytro Poplavskiy [ods.ai], Phillip Cheng, 16bit.ai / layer6, JRS_HP, PFNeumonia, DEEPRADIOLOGY, Mu Song, DASA-FIDI-IARA etDancingBear.Ils ont été récompensés lors d'une cérémonie de remise des prix du Machine Learning Challenge qui s'est déroulée le 26 novembre 2018 dans le Machine LEarninf showcase du RSNA 2018.

"L'espoir que l'intelligence artificielle fournira bientôt des outils précieux pour la radiologie continue de croître, a déclaré le Pr Luciano Prevedello, chef de la division informatique de l'imagerie médicale de l'Ohio University et président du sous-comité de pilotage Machine Learning du RSNA Informatics Radiology Comitee. En organisant des défis comme celui-là, la RSNA joue un rôle important dans la promotion et la démonstration de ces capacités." Les résultats complets et des informations détaillées sur le défi sont disponibles sur le site Kaggle.

Bruno Benque avec RSNA


toshiba

Des modèles pertinents de deep learning pour la radiographie thoracique
03/12/2019 : Selon une étude publiée dans la revue Radiology, le deep learning peut détecter des résultats de radiographie thoracique cliniquement significatifs aussi efficacement que des radiologues expérimentés. Les chercheurs rapportent que leurs résultats pourraient constituer une ressource précieuse pour le développement futur de modèles d’intelligence artificielle pour la radiographie thoracique.

Assembler plusieurs modèles de machine learning pour affiner les résultats
27/11/2019 : La combinaison de plusieurs modèles de machine learning peut s’apparenter à une interprétation avec plusieurs avis de radiologues. Une étude publiée dans la Revue Radiology : Intelligence Artificielle décrit des résultats en ce sens. Un chalenge sur les hémorragies cérébrales explorées par scanner sera organisé au RSNA 2019.

Un réseau de neurones profonds pour améliorer le diagnostic de cancer du poumon
13/11/2019 : Selon des recherches publiées dans la revue Radiology, les radiologues assistés par un logiciel basé sur le deep learning étaient plus en mesure de détecter les cancers du poumon malins sur radiographies du thorax.

L'intelligence artificielle au révélateur de l'imagerie oncologique
12/11/2019 : Dans notre série d’articles dédiés au prochain symposium Scanner volumique, nous allons à la rencontre des orateurs qui animeront cet événement. Aujourd’hui, le Pr Pierre-Jean Valette évoque pour nous l’intelligence artificielle appliquée à l’imagerie oncologique, un thème qu’il abordera lors du symposium.

La recherche sur l'IA en imagerie avance avec le Data Challenge
25/10/2019 : Le Pr Nathalie Lassau, Professeur de Radiologie à l'Université Paris Sud et Co-Directrice du laboratoire d Imagerie IR4M (UPSUD/ CNRS) à l'Institut Gustave Roussy, est la responsable du Data Challenge dont la première édition a été organisée aux JFR 2018. Nous l'avons rencontrée pour une évocation des améliorations apportées, en 2019, à cette compétition.

Une plateforme dédiée pour choisir un moteur d'IA pertinent
03/10/2019 : Acteur historique de l'informatique de Santé, Softway Medical propose une offre d'intelligence artificielle tout à fait originale. À partir d'un catalogue de moteurs d'IA, le radiologue pourra choisir celui qui répondra précisément à ses besoins. Rendez-vous aux JFR 2019 pour découvrir cette nouvelle offre.

L'hémorragie cérébrale, thème du RSNA IA challenge 2019
17/09/2019 : La Radiological Society of North America (RSNA) vient de lancer son troisième défi annuel sur l'intelligence artificielle (IA): le défi RSNA de détection et de classification des hémorragies intracrâniennes.

La Data science en Santé se développe à l'Université
13/08/2019 : L'Intelligence artificielle en Santé fera l'objet de plusieurs cursus de formation dans les Universités françaises à la rentrée. C'est notamment le cas à l'Université Paris Descartes.

RSNA 2019 : 3 700 m2 dédiés à l'intelligence artificielle
09/08/2019 : Le RSNA 2019 AI Showcase proposera un plus grand espace dédié à l'intelligence artificielle. Des démonstrations et des salles de classe permettront aux fournisseurs de solutions et aux spécialistes de promouvoir les outils d'aide à la décision clinique ainsi que les bonnes pratiques de gestion des données.

De nouveaux outils d'aide à la décision en mammographie
18/06/2019 : L'aide à la décision en mammographie 2D et tomosynthèse 3D vient de s'enrichir, avec iCAD, de nouvelles applications annoncées lors du récent congrès de la SIFEM.


Nanobiotix passe un nouveau niveau de développement auprès de la FDA
27/02/2020 : Nanobiotix poursuit son développement et obtient la désignation de « Fast Track » pour le NXTXR3. Ce statut lui promet des procédures d’évaluation accélérées notamment pour de futurs essais cliniques.

Le rôle du radiologue dans un contexte de coronavirus selon l'ESR
26/02/2020 : Le point d’étape publié par l’European Society of Radiology (ESR) concernant le coronavirus fait état d’un taux de mortalité due à cette maladie très faible en dehors de la Chine. Il met en lumière le rôle des radiologues pour la détection précoce et préconise de se méfier des patients asymptomatiques.

CCAM Radiologie évolue pour plus d'ergonomie et d'interactivité
26/02/2020 : La plateforme d’aide à la cotation des actes de radiologie CCAM-Radiologie évolue pour optimiser le temps médical des radiologues. Il s’est enrichi d’un forum de discussion et fera bientôt l’objet d’une refonte complète plus ergonomique, incluant un e-learning et un algorithme pour la validation des associations d’actes.

Coronavirus : Une session spéciale organisée lors de l'ECR 2020
25/02/2020 : Devant l’ampleur mondiale de l’épidémie de coronavirus (COVID-19), la session de l’ECR 2020 dédiée à cette maladie sera accessible gratuitement pour les congressistes sur place mais également pour les internautes sur ESR Connect.

Le futur de la médecine nucléaire au prochain congrès ISI NucMed
24/02/2020 : Afin de préparer les acteurs de la médecine nucléaire à l’évolution future de cette spécialité, Arronax Nantes organise en juin prochain l’ISI NucMed, un congrès pluridisciplinaire traitant de production de nucléides, d’intelligence artificielle appliquée et de l’approche théranostique.

Coronavirus au scanner : des images différentes selon le stade d'évolution
21/02/2020 : Dans une nouvelle recherche publiée le 20 février 2020 dans la revue Radiology, des chercheurs du Mount Sinai Health System de New York ont démontré que les images scanographiques dans les cas de coronavirus 19 (COVID-19) sont liées à l'évolution de l'infection.

Le Pôle Imagerie Médicale de l’AP-HM surfe sur la dynamique créée par le projet Imagerie Avenir Marseille (IAM-APHM)
14/02/2020 : Alors qu’il arrive à son terme, le projet de renouvellement des modalités d’imagerie du Pôle Imagerie Médicale (PIM) de l’AP-HM suscite bien des espoirs. La dynamique créée par la forte implication des équipes médicales, paramédicales, techniques, biomédicales et administratives et le dialogue constructif qu’il a favorisé permettront d’améliorer la cohésion et la montée en compétences de tous les acteurs du pôle et des directions concernées.

Découvrez les images du coronavirus mises à jour dans Spectrum of imaging
13/02/2020 : « Radiology of Coronavirus : Spectrum of imaging », édité par la Revue Radiology, est une page web mise à jour continuellement. Elle fournit aux radiologues un panel de cas cliniques pour les assister dans leur décision.

Une évocation de l'imagerie médicale de demain au MDCT 2020
12/02/2020 : Le scanner spectral, la radiologie interventionnelle et l’intelligence artificielle ont constitué les thématiques majeures développées lors du 9ème Symposium Scanner volumique. Un événement qui a laissé entrevoir ce que pourrait être l’imagerie médicale diagnostique et thérapeutique à moyen terme.

Dépistage du cancer du poumon : la FNMR interpelle à nouveau les pouvoirs publics
11/02/2020 : Suite aux bons résultats de la récente étude NELSON, la FNMR vient réitérer, par communiqué, sa demande auprès des pouvoirs publics d’étudier la mise en place du dépistage du cancer du poumon par scanner low dose.


Coronavirus au scanner : des images différentes selon le stade d'évolution
21/02/2020 : Dans une nouvelle recherche publiée le 20 février 2020 dans la revue Radiology, des chercheurs du Mount Sinai Health System de New York ont démontré que les images scanographiques dans les cas de coronavirus 19 (COVID-19) sont liées à l'évolution de l'infection.

Les images pulmonaires caractéristiques du coronavirus au scanner
05/02/2020 : Dans un rapport spécial publié le 4 février 2020 dans la revue Radiology, des chercheurs décrivent les caractéristiques scanographiques qui facilitent la détection et le diagnostic précoces du coronavirus de Wuhan.

Une évocation de l'imagerie médicale de demain au MDCT 2020
12/02/2020 : Le scanner spectral, la radiologie interventionnelle et l’intelligence artificielle ont constitué les thématiques majeures développées lors du 9ème Symposium Scanner volumique. Un événement qui a laissé entrevoir ce que pourrait être l’imagerie médicale diagnostique et thérapeutique à moyen terme.

Optimiser la cotation des actes grâce à un nouveau site web gratuit
03/09/2019 : Le catalogue CCAM est souvent mal employé par les radiologues, ce qui peut engendrer des erreurs de cotations. C'est pout leur venir en aide que le site web gratuit ccam-radiologie.fr a été conçu, afin d'optimiser la facturation de l'activité radiologique.

De nouvelles données pour identifier le coronavirus 2019-nCoV au scanner
11/02/2020 : Les signes détaillés du coronavirus 2019-nCoV viennent de faire l’objet d’une nouvelle étude parue dans la Revue Radiology. Des images en verre dépoli majoritairement périphériques et postérieures sont caractéristiques au scanner.

LE GADOLINIUM EST-IL DANGEREUX A LONG TERME ?
05/05/2015 : Une série d'études récentes montre que le Gadolinium s'accumule de façon résiduelle dans le cerveau. Les dangers de ces résidus sont sans doute liées à la structure moléculaire de l'agent chimique qui accompagne le Gadolinium dans le corps des patients. Et les habitudes des radiologues sont appelées à changer, selon le Pr Emmanuel Kanal.

La recherche sur l'IA en imagerie avance avec le Data Challenge
25/10/2019 : Le Pr Nathalie Lassau, Professeur de Radiologie à l'Université Paris Sud et Co-Directrice du laboratoire d Imagerie IR4M (UPSUD/ CNRS) à l'Institut Gustave Roussy, est la responsable du Data Challenge dont la première édition a été organisée aux JFR 2018. Nous l'avons rencontrée pour une évocation des améliorations apportées, en 2019, à cette compétition.

Le futur de la médecine nucléaire au prochain congrès ISI NucMed
24/02/2020 : Afin de préparer les acteurs de la médecine nucléaire à l’évolution future de cette spécialité, Arronax Nantes organise en juin prochain l’ISI NucMed, un congrès pluridisciplinaire traitant de production de nucléides, d’intelligence artificielle appliquée et de l’approche théranostique.

Réglementation concernant les appareils mobiles des cabinets dentaires
17/05/2016 : Les appareils mobiles ou portables générant des rayons X au sein des cabinets dentaires font désormais l’objet d’une surveillance identique à un poste fixe. C’est ce qu’a rappelé l’ASN dans une note datée du 2 mai 2016.

Le retour du modificateur Z officialisé dans un arrêté !
28/08/2019 : Le modificateur Z devrait bientôt faire son retour dans la nomenclature des actes de radiologie. C'est en tout cas ce qui annoncé dans l''Arrêté du 14 août 2019 paru au Journal Officiel.