Vous êtes dans : Accueil > Actualités > Intelligence Artificielle, Machine Learning > Diagnostic automatique des radiographies pulmonaires: dans les années 60, déjà...

Diagnostic automatique des radiographies pulmonaires: dans les années 60, déjà...

MERCREDI 21 NOVEMBRE 2018 Soyez le premier à réagirSoyez le premier à réagir

Les recherches sur les usages de l'Intelligence Artificielle appliqués à la radiologie se multiplient désormais. L'éditorial du Journal Radiology revient sur ces application et rappelle que, dans les années 60, un radiologue précurseur avait initié un système d'apprentissage des images pathologiques sur les radiographies du poumon.

RSNA

Dans son éditorial du Journal Radiology, le Dr Bram Van Ginneken, du Department of Raiology and Nuclear Medicine, Radboud University Medical Center de Nimegue (Pays-Bas), traite de la manipulation des images radiologiques thoraciques dans le cadre d'une médecine prédictive.

Un système de codage des radiographies pulmonaires déjà dans les années 60

Cette pratique n'est pas récente puisqu'il fait référence à un article de Lodwick et al. paru en août 1963 dans la même revue et dans lequel il faisait figure de visionnaire. Les auteurs avaient analysé des images de 514 radiographies du thorax chez les patients atteints d'un cancer du poumon et y avaient affecté une sorte de codage dont les fonctionnalités étaient spécialement conçues pour analyser le cancer du poumon sur les radiographies interprétées par un radiologue. Cette étude avait montré qu'un système informatique pourrait prédire la survie à un an en calculant ces caractéristiques de codage lui-même. Le Dr Lodwick avait alors annoncé qu'il s'agissait d'un "concept de conversion des images radiologiques en numérique, les séquences de données pouvant être manipulées et évaluées par l'ordinateur".

Le Deep Learning pour concrétiser la prédiction du Dr Lodwick

Le Dr Van Ginneken revient ensuite sur la période actuelle où la radiographie thoracique est toujours l'examen le plus couramment effectué et qui est lu exclusivement par le radiologue ou, plus largement par un praticien, mais pas par les machines. Sauf que depuis l'avènement du Deep Learning et des réseaux de neurones à plusieurs couches, les pratiques sont en passe de changer. Le nombre de publications sur ce sujet augmente rapidement, dit-il, et de nouvelles revues sont en cours de création, dont Radiology: Artificial Intelligence, une sous-spécialité du Journal du RSNA. L'intérêt des start-up et des industriels du secteur pour cette thématique montre ainsi que nous sommes proches de réaliser ce que Lodwick et al avaient envisagé en 1963.

Des prérequis technologiques indispensables

Mais le Deep Learning est fondamentalement différent des approches plus traditionnelles de machine learning, de radiomique ou de CAD car il agit directement sur les données d'entrée et ne comptent pas sur un ensemble de processus préfabriqués comme le système de codage décrit par Lodwick et al. Ce processus ajuste en permanence les données de toutes les couches en veillant à ce que le les images d'entrée soient mappées vers la bonne sortie. Pour être efficace, il nécessite un grand corpus d'images, le choix d'une architecture réseau et de ses hyperparamètres, ainsi qu'un ordinateur avec unité de traitement graphique. C'est ce type de système qu'a utilisé le Dr Jared A. Dumond, du Departments of Computer Science, Biomedical Data Science and Radiology de la Stanford University (USA) dans une étude sur des radiographies pulmonaires en vue de leur classification automatique tant que normales ou anormales, permettant potentiellement un tri des images en pratique clinique.

Une étude pour évaluer un processus de prédiction pathologiques à partir des radiographies du poumon

Il s'agissait d'évaluer l'aptitude des réseaux de neurones à convolution (CNN) à permettre la classification haute performance binaire automatisée des radiographies thoraciques. Dans cette étude rétrospective, 216 431 radiographies thoraciques de face réalisées entre 1998 et 2012 ont été extraites, ainsi que les comptes rendus associés et une donnée prospective sur le radiologue traitant. Cet ensemble de données a été utilisé pour former les CNN de classification des radiographies thoraciques comme normales ou anormales avant leur évaluation sur une série de 533 images conservées et référencées par des radiologues experts. Les caractéristiques techniques de l'outil de Deep Learning ont été évalués et une analyse détaillée des erreur a été réalisée.

Il en résulte que les CNN formés avec une série réduite de radiographies thoraciques étiquetées de manière prospective ont obtenu des performances diagnostiques élevées dans la classification des radiographies thoraciques comme normales ou anormales. Les chercheurs en ont déduit que cette fonction peut être utile pour hiérarchiser automatiquement les radiographies thoraciques anormales.

Bruno Benque avec RSNA


toshiba

Les trois lauréats du Myrian Studio Challenge sont connus
11/12/2018 : Intrasense a récompensé trois projets innovants en imagerie médicale en décernant les trois Prix "Myrian® Studio Challenge 2018" au dernier RSNA.  

Le deep learning pour gagner le combat contre la tuberculose
03/12/2018 : Le combat contre la tuberculose pourrait être gagné en utilisant l'IA pour le diagnostic sur les radiographies pulmonaires. Ce thème a été développé dans un article de la revue Radiology, primé au congrès de la RSNA 2018.  

La RSNA récompense des algorithmes d'identification de la pneumonie par radiographie pulmonaire
27/11/2018 : Le Pneumonia Detection Challenge a récompensé dix équipes ayant élaboré chacune un algorithme de Machine Learning pour identifier une pneumonie sur des radiographies pulmonaires. Ils ont été présentés le 26 novembre lors du congrès 2018 de la RSNA.

Diagnostic automatique des radiographies pulmonaires: dans les années 60, déjà...
21/11/2018 : Les recherches sur les usages de l'Intelligence Artificielle appliqués à la radiologie se multiplient désormais. L'éditorial du Journal Radiology revient sur ces application et rappelle que, dans les années 60, un radiologue précurseur avait initié un système d'apprentissage des images pathologiques sur les radiographies du poumon.

Un projet d'Intelligence Artificielle surdimensionné au Nord de l'Angleterre
13/11/2018 : Sectra met à disposition du consortium Northern Pathology Co-operative (NPP) au Royaume-Uni, sa plateforme d'Intelligence Artificielle pour un projet de mise en commun d'images radiologiques oncologiques pesant quelques 1,2 pétaoctets par an.  

Détecter précocement la maladie d'Alzheimer grâce au Deep Learning des données de PET-FDG
06/11/2018 : Le Deep Learning basé sur les données du PET-FDG améliorerait la capacité de l'imagerie cérébrale à prédire précocement la maladie d'Alzheimer. C'est ce que conclut une étude publiée dans la revue Radiology qui identifie les changements métaboliques avec une sensibilité significative.  

Brain(s), la plateforme de recherche & développement japonaise d'Intelligence Artificielle en Santé
02/11/2018 : Fujifilm est désormais lancé dans le développement de technologies d'Intelligence Artificielle. C'est ainsi qu'ellle vient d'annoncer la création de "Brain(s)", son Fujifilm Creative AI Center, plateforme de recherche et développement situé en plein cœur de Tokyo.

Naissance de DRIM France IA, l'écosystème créé par le Conseil de la Radiologie française
24/10/2018 : L'écosystème français d'Intelligence Artificielle dédié à l'imagerie médicale est créé et s'appelle "DRIM France IA". Le G4 a annoncé sa mise en œuvre lors des JFR 2018.  

Canon Medical Systems intègre l'IA au cœur de ses solutions d'imagerie
10/10/2018 : Dès la fin 2018 Canon Medical Systems implantera son premier Scanner intégrant de l’intelligence artificielle (IA) au CHU de Dijon. Une solution de Deep Learning Reconstruction (DLR) embarquée permettra en effet d’augmenter la qualité et la précision des images et d’abaisser le niveau d’irradiation du patient.

Imagerie et IA: un duo à réguler finement au bénéfice du patient
09/10/2018 : Nesrine Benyahia, Présidente de DrData, et Stéphane Boyer, Directeur Général d'Arterys, nous éclairent sur les véritables enjeux de l’intelligence artificielle en imagerie médicale par des regards croisés sur les plans du juridique, des politiques publiques et des applications pratiques.


Perfectionnez-vous en IRM pelvienne en présentiel et e-learning
13/12/2018 : La formation FORCOMED de perfectionnement à l'IRM pelvienne est reconduite en 2019. Deux sessions en présentiel sont programmées, ainsi qu'un module d'e-learning.

Le Dr Philippe Cart nouveau Président du Syndicat des Radiologues Hospitaliers
13/12/2018 : Le Dr Philippe Cart (CH Charleville-Mézières) a été élu, le 7 décembre 2018, Président du Syndicat des Radiologues Hospitaliers (SRH).

Des gains significatifs dans la planification et la durée des traitements pour le cyberknife
12/12/2018 : Avec son système de planification de traitement Accuray Precision®associé à l’optimisateur VOLOTM pour le Cyberknife, Accuray réduit significativement les durées de planification et les temps de traitement.

Le JT du RSNA du 7 décembre 2018
12/12/2018 : Pour clore notre série de comptes rendus du RSNA 2018, en partenariat avec les Entretiens Médicaux d'Enghein, le JT du 7 décembre fait la synthèse de l'édition 2018 et présente des outils d'impression 3D.

Les trois lauréats du Myrian Studio Challenge sont connus
11/12/2018 : Intrasense a récompensé trois projets innovants en imagerie médicale en décernant les trois Prix "Myrian® Studio Challenge 2018" au dernier RSNA.  

Une meilleure détection du cancer du sein depuis la mammographie numérique
11/12/2018 : Le passage d'une mammographie sur film à une mammographie numérique a augmenté la détection du cancer du sein de 14% au Royaume-Uni sans augmenter le taux de rappel, selon une nouvelle étude majeure parue dans la revue Radiology.

Le JT du RSNA du 6 novembre 2018
10/12/2018 : Dans notre série de comptes rendus du RSNA 2018, en partenariat avec les Entretiens Médicaux d'Enghein, le JT du 6 décembre parle de gadolinium, de cryo et thermo-ablation, et de la rentabilité relative des modalités présentées dans ce congrès.

Un site d'information pour tranquilliser les enfants avant un examen
07/12/2018 : RadiologyInfo.org a lancé RadInfo 4 Kids, une nouvelle section du site Web grand public contenant des vidéos, des histoires, des jeux et des activités pour aider les enfants et leurs parents à se préparer aux examens d'imagerie médicale.

Le JT du RSNA du 5 décembre 2018
06/12/2018 : Dans notre série de comptes rendus du RSNA 2018, en partenariat avec les Entretiens Médicaux d'Enghein, le JT du 5 décembre évoque la radiomique, le TEP-IRM et les grandes tendances observées au RSNA 2018 notamment.

Canon Medical présente ses nouveautés au RSNA 2018
06/12/2018 : Canon Medical a une nouvelle fois, lors du RSNA 2018, fait la preuve de sa polyvalence et de son avance technologique avec ses modalités d'explorations avancées.


Radioprotection: ce qui devrait changer le 1er juillet 2018
30/03/2018 : L'Ordonnance instituant de nouvelles règles en matière de prévention du risque ionisant devrait entrer en vigueur le 1er juillet 2018. Il n'y aura pas, d'après les informations que nous avons recueillies, de révolution. La gestion des professionnels multi-établissements devrait être revue, la fiche d'exposition devrait disparaître et les PCR externes sont appelés à faire place à des OCR certifiés ISO.

LE GADOLINIUM EST-IL DANGEREUX A LONG TERME ?
05/05/2015 : Une série d'études récentes montre que le Gadolinium s'accumule de façon résiduelle dans le cerveau. Les dangers de ces résidus sont sans doute liées à la structure moléculaire de l'agent chimique qui accompagne le Gadolinium dans le corps des patients. Et les habitudes des radiologues sont appelées à changer, selon le Pr Emmanuel Kanal.

Les trois lauréats du Myrian Studio Challenge sont connus
11/12/2018 : Intrasense a récompensé trois projets innovants en imagerie médicale en décernant les trois Prix "Myrian® Studio Challenge 2018" au dernier RSNA.  

Perfectionnez-vous en IRM pelvienne en présentiel et e-learning
13/12/2018 : La formation FORCOMED de perfectionnement à l'IRM pelvienne est reconduite en 2019. Deux sessions en présentiel sont programmées, ainsi qu'un module d'e-learning.

Détecter précocement la maladie d'Alzheimer grâce au Deep Learning des données de PET-FDG
06/11/2018 : Le Deep Learning basé sur les données du PET-FDG améliorerait la capacité de l'imagerie cérébrale à prédire précocement la maladie d'Alzheimer. C'est ce que conclut une étude publiée dans la revue Radiology qui identifie les changements métaboliques avec une sensibilité significative.  

Un site d'information pour tranquilliser les enfants avant un examen
07/12/2018 : RadiologyInfo.org a lancé RadInfo 4 Kids, une nouvelle section du site Web grand public contenant des vidéos, des histoires, des jeux et des activités pour aider les enfants et leurs parents à se préparer aux examens d'imagerie médicale.

Une meilleure détection du cancer du sein depuis la mammographie numérique
11/12/2018 : Le passage d'une mammographie sur film à une mammographie numérique a augmenté la détection du cancer du sein de 14% au Royaume-Uni sans augmenter le taux de rappel, selon une nouvelle étude majeure parue dans la revue Radiology.

Canon Medical présente ses nouveautés au RSNA 2018
06/12/2018 : Canon Medical a une nouvelle fois, lors du RSNA 2018, fait la preuve de sa polyvalence et de son avance technologique avec ses modalités d'explorations avancées.

Naissance de DRIM France IA, l'écosystème créé par le Conseil de la Radiologie française
24/10/2018 : L'écosystème français d'Intelligence Artificielle dédié à l'imagerie médicale est créé et s'appelle "DRIM France IA". Le G4 a annoncé sa mise en œuvre lors des JFR 2018.  

L'Ingenia Ambition: une innovation de rupture en IRM
20/11/2018 : L'IRM Ingenia Ambition de Philips Healthcare n'a besoin que de 7 litres d'hélium pour fonctionner. Marceau Eck, Responsable marketing IRM, que nous avons rencontré aux JFR 2018, revient sur les avantages d'une telle évolution.