Publicité

Un modèle d'IA pour des dépistages plus personnalisés du cancer du sein

07/05/2019
De Bruno Benque avec RSNA

Des chercheurs de deux grandes institutions américaines ont mis au point un nouvel outil doté de méthodes avancées d’intelligence artificielle permettant de prédire le risque futur de cancer du sein chez une femme, selon une nouvelle étude publiée dans la revue Radiology.

Identifier les femmes à risque de cancer du sein est une composante essentielle de la détection précoce et efficace de la maladie. Cependant, les modèles disponibles basés sur les antécédents familiaux et la génétique ne permettent pas de prédire la probabilité d'apparition de la pathologie.

Le deep learning pour normaliser et automatiser le risque de cancer du sein

La densité est un facteur de risque indépendant du cancer du sein qui a été inclus à certains modèles pour améliorer l'évaluation du risque. Elle repose sur une évaluation subjective pouvant varier d’un radiologue à l’autre. Le deep learning a fait l'objet d'une étude publiée dans la revue Radiology comme moyen de normaliser et d’automatiser ces mesures. "Il y a beaucoup plus d'informations dans une mammographie que les quatre catégories de densité mammaire, précise l'auteur principal de l'étude, le Dr Adam Yala, candidat au Massachusetts Institute of Technology (MIT) de Cambridge. En utilisant le deep learning, nous identifions des indices subtils qui indiquent un cancer futur."

Trois modèles d'apprentissage inclus dans une étude

Le Dr Yala, en collaboration avec le Dr Regina Barzilay, experte en IA et professeur au MIT, et le Pr Constance Lehman, Chef du département d'imagerie du sein du Massachusetts General Hospital (MGH) et professeur de radiologie à La Harvard Medical School, a récemment comparé trois approches différentes d’évaluation des risques. Le premier modèle s'appuyait sur les facteurs de risque traditionnels, le second sur le deep learning utilisant uniquement la mammographie et le troisième sur une approche hybride intégrant les deux premiers modèles. Les chercheurs ont, pour ce faire, utilisé près de 90 000 mammographies de dépistage haute résolution d'environ 40 000 femmes pour former, valider et tester le modèle de deep learning.

Une évaluation de l'incidence nettement améliorée

Les modèles de deep learning ont permis une évaluation du risque considérablement améliorée par rapport au modèle Tyrer-Cuzick, une des normes cliniques actuelles qui utilisent la densité mammaire. En comparant le modèle hybride à la densité mammaire, les chercheurs ont constaté que l'incidence de cancer chez les patientes à seins non denses et à haut risque évalué par le modèle était 3,9 fois plus élevée que celle des patientes à seins denses et à faible risque. Ces caractéristiques ont été étudiées dans différents sous-groupes de femmes. "Contrairement aux modèles traditionnels, notre modèle de deep learning fonctionne aussi bien selon les races, les âges et les antécédents familiaux, remarque le Dr Barzilay. Jusqu'à présent, les femmes afro-américaines étaient nettement désavantagées dans ce cadre. Notre modèle d'IA a changé cela. " 

Un pas de plus vers des programmes de dépistage plus personnalisés

"Il y a une très grande quantité d'informations, dans une mammographie à haute résolution, que les modèles de risque de cancer du sein n'ont pas été en mesure d'utiliser jusqu'à récemment, a ajouté le Dr Yala. En utilisant le deep learning, nous pouvons apprendre à exploiter ces informations directement à partir des données et à créer des modèles beaucoup plus précis pour des populations diverses." Les mesures de la densité mammaire assistée par l'IA sont déjà utilisées pour les mammographies de dépistage réalisées au Massachusetts General Hospital. Les chercheurs suivent sa performance clinique tout en cherchant à perfectionner les moyens de communiquer les informations de risque aux femmes et à leurs médecins traitants.

"Un élément manquant pour soutenir des programmes de dépistage plus efficaces et plus personnalisés est constitué par des outils d'évaluation des risques faciles à mettre en œuvre et qui fonctionnent pour toute la diversité des femmes que nous explorons, conclut le Dr Lehman. Nous sommes ravis de nos résultats et désireux de travailler en étroite collaboration avec centres de santé, nos fournisseurs et, plus important encore, nos patientes pour intégrer cette découverte à l'amélioration des résultats pour toutes les femmes."

SUR LE MÊME THÈME

IA & Données

Trouver le modèle qui puisse efficacement intégrer l'IA dans le flux de travail du radiologue

Le médecin-chercheur Eric J. Topol et le spécialiste en IA de Harvard, Pranav Rajpurkar plaident en faveur d'une séparation claire des rôles entre les systèmes d'IA et les radiologues dans un éditorial publié dans la Revue Radiology. Ils proposent un cadre que les radiologues doivent adapter à leurs...

28/08/2025 -

IA & Données
Un acteur français de l'IA propose deux outils TDM pour la détection du cancer

Un acteur français de l'IA propose deux outils TDM pour la détection du cancer

Gleamer, acteur française de l’IA médicale, a lancé en juillet dernier sa suite OncoView destinée à assister les radiologues dans la détection précoce du cancer par densitométrie (TDM).

22/08/2025 -

IA & Données
Un réseau de radiologues français conclut un accord avec un fournisseur d'IA pour le diagnostic

Un réseau de radiologues français conclut un accord avec un fournisseur d'IA pour le diagnostic

Gleamer a annoncé, le 10 Juillet 2025, la signature d’un partenariat stratégique avec le réseau France Imageries Territoires (FIT) pour le déploiement des solutions Gleamer Copilot® dans l’ensemble des centres d’imagerie du réseau FIT.

29/07/2025 -

IA & Données
Les comptes rendus radiologiques ne sont pas près de passer par GPT-4
Abonné(e)

Les comptes rendus radiologiques ne sont pas près de passer par GPT-4

Les grands modèles de langage multimodaux seraient-ils capables de réaliser des comptes rendus radiologiques ? Des résultats d’essais contradictoires troublent le ressenti sur les possibilités de GPT-4V, un modèle qui se concentre uniquement sur la précision diagnostique. Une étude publiée dans la R...

21/07/2025 -

IA & Données
Un nouvel outil d'extraction de données spécialisé en radiologie

Un nouvel outil d'extraction de données spécialisé en radiologie

Les méthodes d’élaboration des grands modèles de langage sont basées sur des règles qui ne traitent pas efficacement les données non standardisées. Des chercheurs britanniques présentent, dans un article publié dans la Revue European Radiology, RADEX, le nouvel outil d’extraction de données radiolog...

15/07/2025 -

IA & Données
Des grands modèles de langage sensés participer à l'annotation des images pour le deep learning
Abonné(e)

Des grands modèles de langage sensés participer à l'annotation des images pour le deep learning

Incontournables pour l’entrainement des modèles de deep learning, les annotations d’images radiologiques sont rébarbatives et chronophages pour les experts qui les créent. Des grands modèles de langage (LLM) pourraient remplacer les annotations humaines, comme l’indique un article scientifique publi...

23/06/2025 -

IA & Données
Les bonnes pratiques pour l'évaluation de la pertinence d'un outil d'IA en imagerie
Abonné(e)

Les bonnes pratiques pour l'évaluation de la pertinence d'un outil d'IA en imagerie

Radiologues, informaticiens et chercheurs présentent, dans un article publié dans la Revue Radiology, les pièges et les meilleures pratiques pour atténuer les biais des modèles d'intelligence artificielle (IA) en imagerie médicale. Ils présentent une sorte de feuille de route pour des pratiques plus...

13/06/2025 -

LETTRE D'INFORMATION

Ne manquez aucune actualité en imagerie médicale et radiologie !

Inscrivez-vous à notre lettre d’information hebdomadaire pour recevoir les dernières actualités, agendas de congrès, et restez informé des avancées et innovations dans le domaine.