Vous êtes dans : Accueil > Actualités > Intelligence Artificielle, Machine Learning > Détecter précocement la maladie d'Alzheimer grâce au Deep Learning des données de PET-FDG

Détecter précocement la maladie d'Alzheimer grâce au Deep Learning des données de PET-FDG

MARDI 06 NOVEMBRE 2018 Soyez le premier à réagirSoyez le premier à réagir

Le Deep Learning basé sur les données du PET-FDG améliorerait la capacité de l'imagerie cérébrale à prédire précocement la maladie d'Alzheimer. C'est ce que conclut une étude publiée dans la revue Radiology qui identifie les changements métaboliques avec une sensibilité significative.

 

RSNA

Le diagnostic précoce de la maladie d'Alzheimer est extrêmement important, les traitements s'avérant plus efficaces au début de l'évolution de la maladie.

Des changements métaboliques difficiles à évaluer au stade précoce

La recherche a établi, en effet, un lien entre l'évolution de la maladie et les modifications du métabolisme, comme en témoigne l'absorption de glucose dans certaines régions du cerveau, mais ces modifications peuvent être difficiles à identifier. C'est dans ce cadre qu'une étude, publiée dans la revue Radiology, a tenté d'évaluer les apports de l'Intelligence Artificielle (IA) dans la capacité de l'imagerie cérébrale à prédire cette maladie. "Les différences d'absorption de glucose dans le cerveau sont très subtiles et diffuses, commente le Dr Jae Ho Sohn, co-auteur de l'étude, du département de radiologie et d'imagerie biomédicale de l'Université de Californie à San Francisco (UCSF). L'identification des biomarqueurs spécifiques de la maladie est facile, mais les changements métaboliques représentent un processus plus global et subtil."

Création d'un algorithme basé sur les données du PET-FDG

Le Dr Benjamin Franc, auteur principal de l'étude, de l'UCSF, a contacté le Dr Sohn et l'Université de Californie à Berkeley, par l'intermédiaire du groupe de recherche Big Data in Radiology (BDRAD), une équipe multidisciplinaire de médecins et d'ingénieurs travaillant dans le domaine des datas de radiologie. Il souhaitait envisager avec eux l'utilisation du Deep Learning afin de détecter les modifications du métabolisme cérébral prédictives de la maladie d’Alzheimer. Les chercheurs ont ainsi créé un algorithme sur la base d'un PET au 18-F-fluorodésoxyglucose (PET-FDG). Dans ce type d'examen, le FDG, est injecté dans le sang et la TEP peut ensuite mesurer l'absorption de FDG dans les cellules du cerveau, ce qui fait office d'indicateur de l'activité métabolique.

Le Deep Learning identifie les schémas métaboliques avec une sensibilité significative

Les chercheurs ont eu accès aux données de l'Alzheimer’s Disease Neuroimaging Initiative (ADNI), une vaste étude multi-site axée sur les essais cliniques visant à améliorer la prévention et le traitement de cette maladie. L'ensemble de données ADNI comprenait plus de 2 100 images cérébrales de PET-FDG provenant de 1 002 patients. Les chercheurs ont formé l'algorithme de Deep Learning sur 90% des données, puis l'ont testé sur les 10% restants. Grâce au Deep Learning, l'algorithme a pu apprendre lui-même les schémas métaboliques correspondant à la maladie d'Alzheimer. Enfin, les chercheurs ont testé l'algorithme sur un ensemble indépendant de 40 examens d'imagerie de 40 patients qu'il n'avait jamais étudiés. L'algorithme a atteint une sensibilité de 100% lors de la détection de la maladie, en moyenne plus de six ans avant le diagnostic final.

Un outil complémentaire au travail des radiologues

"Nous sommes très satisfaits de la performance de cet algorithme, s'exclame le Dr Sohn. Il a été possible de prédire chaque cas ayant évolué vers la maladie d'Alzheimer." Bien qu'il reconnaisse que cette procédure indépendante nécessite une étude prospective multi-sites plus poussée, le Dr Sohn remarque que cet algorithme peut être un excellent outil complémentaire pour le travail des radiologues, en plus des éléments biochimiques et des images médicales, ainsi qu'une opportunité pour appliquer des traitements précoces de l'Alzheimer. "Si nous diagnostiquons la maladie d'Alzheimer lorsque tous les symptômes se sont manifestés, le volume du cerveau est tellement important qu'il est trop tard pour intervenir, poursuit-il. Si nous pouvons le détecter plus tôt, les chercheurs auront ainsi la possibilité de trouver des moyens de ralentir, voire d'arrêter, le processus de la maladie."

Des recherches futures sur les agrégats protéiques, marqueurs spécifiques de l'Alzhzimer

Les prochaines recherches porteront notamment sur la formation d'un algorithme de Deep Learning visant à rechercher des schémas associés à l'accumulation de protéines bêta-amyloïdes et tau, d'agrégats protéiques anormaux dans le cerveau, qui sont des marqueurs spécifiques de la maladie d'Alzheimer, selon le Dr Youngho Seo, de l'UCSF, qui a été l’un des conseillers pédagogiques de l’étude. "Si le PET-FDG peut prédire la maladie d'Alzheimer avec l'IA, l'imagerie TEP de la protéine bêta-amyloïde et de la protéine tau, à un stade précoce, peut éventuellement ajouter une autre dimension au pouvoir prédictif de l'IA", conclut-il.

Bruno Benque avec RSNA


toshiba

IA contre le COVID : NEHS DIGITAL et Thales unissent leurs forces
09/11/2020 : Dans le cadre de la lutte contre le COVID-19, Thales et NEHS DIGITAL ont récemment uni leurs compétences dans un projet de traitement des bases de données issues des scanners pulmonaires. Ils peuvent s’appuyer d’ores et déjà sur la base FIDAC.

Intellifence artificielle et radiologie : forces et faiblesses
23/10/2020 : L’intelligence artificielle est au centre d’une communication du Dr Grégory Lenczner sur la plateforme Journées Francophones d’Imagerie Médicale (JFIM). Elle aborde les différentes fonctionnalités de l’IA ainsi que la récurrente question du remplacement du radiologue par la machine.

Détecter l'arthrose pré-symptomatique à l'IRM avec l'IA
05/10/2020 : Des chercheurs américains ont réussi à identifier des signes pré-symptomatiques de l’arthrose à l’aide de l’IA. Dans une étude parue dans la Revue PNAS, ils donnent des résultats en faveur de l’élaboration de médicaments expérimentaux susceptibles de traiter l’arthrose avant qu’elle n’apparaisse.

Un algorithme différentie la pneumonie COVID-19 des autres pneumonies sur la radiographie du thorax
28/09/2020 : Dans une nouvelle étude publiée dans la revue Radiology, un algorithme de deep learning est capable de différencier avec une sensibilité et une spécificité élevées une pneumonie COVID-19 d’une autre non-COVID-19 à partir de radiographies pulmonaires. Cet algorithme obtient de meilleures performances que les radiologues expérimentés.

L'embolie pulmonaire au centre du défi IA organisé au RSNA 2020
16/09/2020 : Au prochain RSNA, les meilleurs projets ayant concouru au défi IA seront présentés. Ce concours, qui promeut les modèles de deep learning pour l’amélioration des interprétations radiologiques, sera dédié cette année à l’embolie pulmonaire à partir d’images de scanner.

L'ESR regrette la baisse des budgets européens consacrés à la recherche médicale
24/08/2020 : L’ESR a récemment publié une déclaration dans laquelle elle regrette la décision de l’Union européenne de réduire son financement prévu pour divers projets de santé et de recherche à venir. Cette décision aura des conséquences néfastes sur la recherche européenne et entravera le potentiel de l’UE de devenir un pôle d’innovation pour l’intelligence artificielle et les soins de santé à l’avenir.

Quels apports de l'IA dans la gestion des images pulmonaires COVID-19 ?
07/05/2020 : Dans la série des webinars ESR Connect qu’elle organise désormais régulièrement, l’European Society of Radiology (ESR) a présenté une session dédiée à l’utilisation de l’intelligence artificielle (IA) pour aider les radiologues dans la gestion des données images pour faire face au COVID-19.

Un modèle de deep learning pour identifier le COVID-19 au scanner
08/04/2020 : Dans une étude publiée dans la Revue Radiology, un modèle de deep learning semble capable de réaliser un diagnostic différentiel de COVID-19 sur les examens de tomodensitométrie. Ce travail montre surtout que la spécificité du scanner semble améliorée comparativement aux autres études publiées sur ce thème.

Données de Santé : une nouvelle approche pour assurer la confidentialité
25/03/2020 : La sécurité des données de Santé et la protection de la vie privée des patients est une préoccupation majeure pour les tutelles sanitaires. Un Rapport publié dans la Revue Radiology suggère de considérer les données comme n’appartenant à personne et de cibler l’éthique des prestataires d’IA.  

Des modèles pertinents de deep learning pour la radiographie thoracique
03/12/2019 : Selon une étude publiée dans la revue Radiology, le deep learning peut détecter des résultats de radiographie thoracique cliniquement significatifs aussi efficacement que des radiologues expérimentés. Les chercheurs rapportent que leurs résultats pourraient constituer une ressource précieuse pour le développement futur de modèles d’intelligence artificielle pour la radiographie thoracique.


Signature d'un partenariat pour la détection des AVC par IA à partir du scanner cérébral
19/11/2020 : En signant un partenariat avec Avicienna.AI, Canon Medical permet aux radiologues d’être alertés en cas d’AVC hémorragique ou ischémique lors d’un scanner cérébral.

Le suivi IRM des joueurs de tennis en surpoids objective une dégénérescence cartilagineuse accrue des genoux
19/11/2020 : Les sports de raquette semblent accélérer la dégénérescence des articulations du genou chez les personnes en surpoids souffrant d'arthrose, selon une étude présentée lors du dernier congrès de la Radiological Society of North America (RSNA). Une surcharge articulaire nocive déclenchant un stress de contact accru sur le ménisque sont des pistes pour expliquer le phénomène.

Plus qu'un fournisseur, Philips est un partenaire
18/11/2020 : Cette année 2020 a été marquée par une crise sanitaire inédite qui a bousculé l’ensemble des acteurs du domaine médical. Jérôme Chevillotte, responsable pôle Diagnostic de précision au sein des équipes Philips Commercial France, revient sur les actions concrètes des derniers mois.

Le Mois sans tabac ravive les besoins de scanner low dose pour le dépistage précoce du cancer du poumon
18/11/2020 : En ce mois sans tabac de sensibilisation au cancer du poumon, la FNMR souhaite interpeler les pouvoirs publics sur les avantages que pourrait apporter le scanner low dose pour le dépistage précoce de cette maladie.

Les apports de la tomosynthèse dans l'étude de Vérone dédiée au dépistage du cancer du sein
16/11/2020 : La tomosynthèse mammaire, en combinaison avec la mammographie synthétique, améliore la détection du cancer par rapport à la mammographie numérique seule, selon une étude italienne publiée dans la revue Radiology. Les résultats de l'étude ajoutent un soutien supplémentaire à l'utilisation du DBT dans les programmes de dépistage du cancer du sein en population.

Audiences records pour l'IDoR 2020
16/11/2020 : L’IDoR 2020 a connu un engouement sans précédent cette année. Le rôle majeur tenu par l’imagerie médicale dans le diagnostic et le traitement de la maladie à COVID-19 y a contribué grandement et les retours d’expérience feront l’objet d’un livre électronique.

Robocath s'ouvre au marché chinois
12/11/2020 : Afin d’adresser le marché de l’imagerie interventionnelle chinois, Robocath vient de créer, avec MedBot, une joint-venture. L’assemblage de la plateforme R-One et la fabrication de consommables seront réalisés sur place.

La Profession Médicale Intermédiaire sera pluridisciplinaire ou ne sera pas
12/11/2020 : Alors qu’une proposition de Loi souhaite créer une Profession Médicale Intermédiaire (PMI), les manipulateurs, comme les autres professionnels paramédicaux - hors infirmier – sont exclus des discussions. Ils contestent, de même que les cadres de santé, cette disposition et souhaitent faire entendre leur voix.

La radiothérapie intra-opératoire est de retour
11/11/2020 : La radiothérapie per-opératoire est de nouveau très utilisée de nos jours et ses indications sont bénéfiques pour les patients. C’est ce qu’a montré un récent webinar diffusé sur la plateforme Oncostream.

L'IRM abrégée pour mieux dépister les cancers des seins denses
10/11/2020 : Dans une étude américaine publiée dans le Journal of Clinical Oncology, l’IRM abrégée montre des résultats supérieurs à la tomosynthèse pour le dépistage du cancer chez les femmes aux seins denses. Le Gouverneur de Pennsylvanie a même pris un décret obligeant les assureurs à rembourser cette exploration complémentaire.


Les apports de la tomosynthèse dans l'étude de Vérone dédiée au dépistage du cancer du sein
16/11/2020 : La tomosynthèse mammaire, en combinaison avec la mammographie synthétique, améliore la détection du cancer par rapport à la mammographie numérique seule, selon une étude italienne publiée dans la revue Radiology. Les résultats de l'étude ajoutent un soutien supplémentaire à l'utilisation du DBT dans les programmes de dépistage du cancer du sein en population.

Gadolinium et grossesse: des risques significatifs d'exposition fœtale
06/09/2019 : Selon une étude publiée dans la revue Radiology, un nombre limité mais préoccupant de femmes sont exposées à un produit de contraste au gadolinium au début de leur grossesse. Les chercheurs suggèrent de mener des mesures efficaces de dépistage de la grossesse afin de réduire l'exposition par inadvertance à ces agents de contraste en début de grossesse.

Plus qu'un fournisseur, Philips est un partenaire
18/11/2020 : Cette année 2020 a été marquée par une crise sanitaire inédite qui a bousculé l’ensemble des acteurs du domaine médical. Jérôme Chevillotte, responsable pôle Diagnostic de précision au sein des équipes Philips Commercial France, revient sur les actions concrètes des derniers mois.

Un radiotraceur de l'épilepsie visible au TEP
22/01/2020 : Un radiotraceur qui se lie spécifiquement à une classe de récepteurs cérébraux lorsqu'il est injecté à des rats et à des humains vivants vient d’être mis au point par une équipe japonaise. Visible lors d’un examen de TEP, ce composé pourrait améliorer le diagnostic et le traitement de l’épilepsie.

Les images pulmonaires caractéristiques du coronavirus au scanner
05/02/2020 : Dans un rapport spécial publié le 4 février 2020 dans la revue Radiology, des chercheurs décrivent les caractéristiques scanographiques qui facilitent la détection et le diagnostic précoces du coronavirus de Wuhan.

Une revue exhaustive des manifestations multisystémiques du COVID-19
03/11/2020 : Deuxième volet de la revue exhaustive réalisée par la plateforme RadioGraphics sur les manifestations radiologiques du COVID-19. Une iconographie toujours aussi impressionnante des affections cardiaques, neurologiques, abdominales, pédiatriques ou musculo-squelettiques notamment, dues au virus.

Les apports de la radiographie thoracique dans la détection du COVID-19
30/03/2020 : Une étude publiée dans la Revue radiologie stipule que les images de détection de la pneumonie au COVID-19 obtenues par radiographie pulmonaire sont sensiblement équivalentes à celles du scanner. Cependant, des différences sont à signaler, notamment pour le suivi des lésions.

L'IRM abrégée pour mieux dépister les cancers des seins denses
10/11/2020 : Dans une étude américaine publiée dans le Journal of Clinical Oncology, l’IRM abrégée montre des résultats supérieurs à la tomosynthèse pour le dépistage du cancer chez les femmes aux seins denses. Le Gouverneur de Pennsylvanie a même pris un décret obligeant les assureurs à rembourser cette exploration complémentaire.

Le scanner nouvel étalon pour le dépistage précoce du Coronavirus
27/02/2020 : Dans une étude de plus de 1000 patients, publiée dans la revue Radiology, la tomodensitométrie thoracique a surpassé les tests de laboratoire dans le diagnostic de coronavirus 2019 (COVID-19). Les chercheurs ont conclu que la tomodensitométrie devrait être utilisée comme principal outil de dépistage du COVID-19.

Signature d'un partenariat pour la détection des AVC par IA à partir du scanner cérébral
19/11/2020 : En signant un partenariat avec Avicienna.AI, Canon Medical permet aux radiologues d’être alertés en cas d’AVC hémorragique ou ischémique lors d’un scanner cérébral.